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Abstract

Reinforcement Learning (RL) and Deep RL, although different, both share the
strong assumption that the environment generates Markovian rewards. A method,
originally demonstrated for RL, adopts the temporal logics LTLf/LDLf to declare
non-Markovian goals and train agents on these tasks. In this thesis, we apply the
same method to Deep RL, demonstrating that it’s possible to successfully apply the
same construction.

The complex observations used in Deep RL introduce new difficulties to be
addressed: how can we ground the logic abstraction, composed of atomic propositions,
to match the environment state? Most of this thesis focus on this central problem,
for a specific class of observations and propositions. We propose an original solution
that employs temporal logic to specify the expected temporal behaviour of the
propositions to extract. We also define a specific model that allows to apply these
ideas on the Atari games, a class of environments frequently used in Deep RL, and
we evaluate the effectiveness of this method in two of those.
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Chapter 1

Introduction

A classic and important branch of Artificial Intelligence (AI) aims at developing
agents that select their actions through forms of logic reasoning, such as planning.
One of the main advantages of these approaches is that reasoning proceeds by
manipulating abstractions. In fact, in logic, we can define symbols that represent
any meaningful event or condition that should be considered. For example, some
propositional symbols might represent conditions such as “the door is closed” or “I
am holding an object”, etc. We’ll also call these atomic propositions with the term
“fluents” (a name that suggests that their truth can change over time).

Reasoning methods based on logics are powerful but they imply one fundamental
ability: at each instant, the agent must be able to decide whether those propositions
are true. This means that all symbols that represent conditions which happen to
be true in the environment, must be true for the agent. This process is called
grounding and it is essential in order to make reasoning relevant for the external
environment. Unfortunately, this can be really hard in complex environments,
because the agent’s sensors may generate noisy and multidimensional inputs, that
are difficult to interpret.

Reinforcement Learning (RL) is a successful field of AI, in which the agent’s goal
is to learn a policy that maximizes the rewards received. We could argue that RL
does not require the valuations just mentioned. Still, rewards and punishments must
be supplied somehow, in response to desirable and undesirable events. We could
consider of providing these feedbacks with programmed ad-hoc conditions, but this
can be easily done just for the simulations we create. Furthermore, as we will see,
complex and non-Markovian tasks can only be solved through a combination of both
RL and logic-based methods; thus, introducing all the needs of the latter.

With this thesis, we defined and implemented an agent based on temporal
logics and Deep Reinforcement Learning. This combination required to investigate
new ways to solve the grounding problem just described, for a specific class of
environments and fluents.
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1.1 Related works

Reinforcement Learning (RL) is an area of Machine Learning in which the agent
is trained by sending rewards and punishments in response to its actions. This
technique can be also used unknown environments, where a model of the dynamics
is not available, because the agent learns by trying all actions and by remembering
those that lead to the highest rewards. As we will see in Chapter 3, most RL
algorithms assume that the environment can be modelled with a Markov Decision
Process (MDP). Many learning algorithms exist in this setting [25].

Neural Networks (NN) have brought new possibilities for RL: in Deep Reinforce-
ment Learning (Deep RL), the agent employs a neural network as a very expressive
function approximator for the quantities it is trying to learn [10]. For example, the
optimal q-value is an important quantity in RL, that the agents are usually designed
to learn from the observations received. The Deep Q-Network (DQN) algorithm [20]
is one the first to successfully employ neural networks in RL. They have shown that
a Deep RL agent can be trained directly from complex observations such as the
frames of a video game. Without any modification, the same agent has been able to
learn and reach human-level performances in many of these games.

Games have always been a classic benchmark for AI algorithms, because they
provide various levels of complexity, they have few and strict rules, and they are
easy to implement and simulate. Regarding Deep RL, many authors have tested
their algorithms on the collection of video games “Atari 2600” [2]. In this thesis,
we’ll use and experiment with games from this collection.

The reinforcement learning algorithm we’ve adopted is called Double DQN [28].
The motivation of this choice is that this is a relatively simple algorithm, based on
DQN, which has also proven to be successful for the specific environments that we’ll
use in our experiments [19]. In fact, among Q-Network algorithms, the only ones
that were able to clearly achieve superior performances in most of these games have
combined many of the others DQN variants [13].

If we look at the results in [19], DQN agents are able to learn excellent policies
for many games. However, for many other environments of the same collection, the
agents struggle to learn and, in some cases, it doesn’t learn anything at all. The
worst performances have been measured for the Montezuma’s Revenge environment.
Even in the works that followed, the only methods that were able to achieve good
policies in this game adopted some form of expert imitation and manual restarts [18].
In Section 4.1, we’ll investigate the main cause of these difficulties.

As we will see throughout this thesis, a promising solution for these environments
is the construction provided in [4] and [6]. The former work [4] has shown that a
Non-Markovian Reward Decision Process (NMRDP) can be easily declared with
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linear-time temporal logics, and it has provided a translation from this NMRDP
to a classic MDP. The logics the authors used are LTLf and LDLf . This idea was
initially introduced in [1] for a linear temporal logic of the past.

The latter work [6], instead, has shown that through a similar construction,
it is possible to influence the agent’s optimal behaviour by declaring additional
non-Markovian rewards that are produced in conjunction with the original rewards.
This paper named this additional module with “Restraining Bolt”. Thorough this
thesis, it may be practical to use this name to refer to this logic construction.

1.2 Objective and results

This work started with the following goal: defining and implementing a Deep RL
agent that, through the Restraining Bolt, is able to achieve non-Markovian tasks.
This first objective has been accomplished, but the Restrained Bolt is a method
based on logic, and, as we’ve already anticipated in this introduction, it requires to
correctly valuate the fluents we define. Since the environments adopted in Deep RL
have much more complex observation spaces, it has been necessary to investigate
new ways to solve the problem of the fluents valuation, at least for a specific class of
fluents and observations.

Thus, it is possible to isolate two groups of contributions of this thesis: those
concerning the definition of a Deep RL agent for non-Markovian goals, and those
related to methods for grounding the fluents to the environment configuration.
Regarding the former, in this thesis:

• We provide a flexible implementation of the Restraining Bolt method described
in [6] and [4].

• We proposed a Neural Network architecture for a Deep RL agent that allowed
to successfully employ the Restraining Bolt in Deep Reinforcement Learning.

• Tests have been conducted in a video game called Montezuma’s Revenge, the
hardest game (for a RL agent) in the Atari 2600 collection [19]. We’ve shown
that the agent can be successfully guided through the initial room of the game,
with low manual intervention.

The latter topic, instead, received much attention in this thesis: how is it
possible to learn a function that, given an observation of the environment, predicts
whether the fluents we have defined are true? As we may recognise, this problem is
really general, and we must restrict to a specific class of fluents and observations.
Observations will be frames of the Atari games, and fluents will be propositions
decidable from each of these images. Every choice or assumption that will further
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restrict the applicability of the proposed method will be pointed our along the text.
Still, there are some interesting achievements of this work that are to be highlighted:

• We don’t manually assign a meaning to some Boolean features. Instead, this
is an initial investigation about how to proceed in the opposite direction: we
first define a set of symbols, then we learn their valuation function.

• We adopt the temporal logic LDLf as a formalism to define some temporal
constraints that our fluents are always expected to satisfy. Candidate valuation
functions will be checked against these constraints.

• The training algorithm won’t require any manual annotation, nor labelled
datasets at all.

• We propose an architecture, based on Deep Belief Networks, that by reducing
the input space dimensionality, binds the valuations to some visual features
that are recognizable in the image.

All these ideas have been implemented in a Python software and tested on games of
the Atari collection.

Finally, we also strongly contributed to the development of the flloat package [7],
a Python software for the conversion of LTLf and LDLf formulae to the associated
automaton (NFA or DFA).

1.3 Structure of the thesis

The rest of this thesis is structured as follows:

2 – Temporal logics and Linear Dynamic Logic
Temporal logics are an important formalism for this work and they will be
used throughout the text. This chapter introduces the reader to concepts such
as: fluents, traces and linear-time temporal logics. Then, we define the Linear
Dynamic Logic (LDLf ), that is the specific temporal logic used in this text.

3 – Reinforcement Learning
Here, we describe the second large group of background topics for this thesis.
We introduce the fundamental concepts of RL, Deep RL, and we define Double
DQN, the Deep RL algorithm that we use.

4 – Reinforcement Learning for non-Markovian rewards
This chapter describes how to design RL agents that are able to learn in presence
of non-Markovian rewards. Here, we see an in-depth description of the problem,
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we build on recent solution methods, and we propose an original view. In
Section 4.1, we analyze what happens when the most common assumptions
of RL, and of Deep RL, are falsified. A recent solution for these complex RL
problems is presented in Section 4.2, where we explain the Restraining Bolt
method. In this section, we also illustrate our original view, in which two
sources of non-Markovian rewards are compared: the standard one, coming
from the Restraining Bolt, and a secondary one coming from incomplete partial
obaservability of the environment. In addition, in Section 4.3, we propose an
original model that allows us to apply the Restraining Bolt method in the
context of Deep RL.

5 – Learning to ground symbols trough RL
In this chapter, we propose an original training method to ground the fluents
valuations to the features of the environment. Here, we explicitly define a
model for the fluents valuation functions. Such model adopts unsupervised
learning techniques to encode the relevant portion of the input frame to a set
of compact features, which simplify the training process. Finally, we formulate
an appropriate training algorithm for this model.

6 – Tool for learning symbols through RL: the AtariEyes package
This chapter presents the software that we’ve developed, which implements all
the concepts presented in the previous chapters. We first review its features and
its functionality from a user perspective. Then, we illustrate some interesting
details of the implementation.

7 – Esperiments
Here, we look at the experiments and training outcomes in two Atari games.
The experiments are finalized to test: the effectiveness of the proposed method
for learning the valuation functions, and the combination of such computed
fluents in a Deep RL agent with the Restraining Bolt.

8 – Conclusions
In this final chapter, we draw the main conclusions that can be derived from
this work, the strength of this approach and its weakness, and many of the
possibilities for improvement.
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Chapter 2

Temporal logics and Linear
Dynamic Logic

2.1 Temporal logics on finite traces

Temporal logics are a class of formal languages, more precisely modal logics, that
allow to talk about properties and events over time [11]. Among all formalisms, we
care about logics that assume a linear time, as opposed to branching, and a discrete
sequence of instants, instead of continuous time. In computer science, the most
famous logic in this group is the Pnueli’s Linear Temporal Logic (LTL) [22].

The assumptions about the nature of time directly reflect to the type of structures
these logics are interpreted on: their models are tuples M = 〈T,≺, V 〉, where T is
a discrete set of time instants, such as N, ≺ is a complete ordering relation on T ,
like <, and V is a valuation function V : T × F → {true, false}. For a logic that
defines a set F of proposition symbols, the function V assigns a truth value to each
of them, in every instant of time. The symbols in F represent atomic propositions
which may or may not hold in different time instants. They are also called “fluents”
(or simply propositional symbols, in this thesis). An equivalent and compact way of
defining such structures is with traces. A trace π is a sequence π0π1 . . . πn, where
each element is a propositional interpretation of the fluents F . Each symbol πi
in the sequence is the set of true symbols at time i: πi ∈ 2F . The i-th element
is also denoted with π(i). π(i, j) represents the trace between instants i and j:
πi, πi+1, . . . , πj−1.

LTL is a logic that only allows to talk about the future. The semantics of its
temporal operators, neXt #, Until U , and of those derived, eventually ♦, always �,
can only access future instants on the sequence. Interpretations for this logic are
infinite traces with a first instant, which are equivalent to valuations on the temporal
frame 〈N, <〉.
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As it has been pointed out in [5], most practical uses of LTL interpret the formulae
on finite traces, not infinite. The pure existence of a last instant of time has strong
consequences on the meaning of all formulae, because operators semantics need to
handle such instant differently. For example, the “always” operator � translates to
“until the last instant”, quite naturally. However, the formula �♦ϕ no longer requires
that ϕ becomes true an infinite number of times (in LTL, this formula represents the
“response” property); instead, it is satisfied exactly by those traces in which ϕ is true
at the last instant. So, it assumes a completely different meaning. Furthermore, both
�♦ϕ and ♦�ϕ become equivalent to ♦(Last ∧ϕ): something that doesn’t happen in
standard LTL1. From this example, it should be clear that the expressive power of
the language has changed, and LTL interpreted over finite traces should be regarded
as a different logic, that we will denote with LTLf . More precisely, over infinite
linearly-ordered interpretations, LTL has the same expressive power of Monadic
Second Order Logic (MSO), while LTLf is equivalent to First-Order Logic (FOL)
and star-free regular expressions, which are strictly less expressive than MSO.

In the next section, we will define a temporal logic, called LDLf , that was
purposefully devised to be interpreted over finite traces. This is the formalism that
we will use, in Section 4.2, to declare plans and desired behaviours. However, many
useful temporal properties can be also expressed with LTLf . So, one may also use
as alternative formalisms LTLf or any temporal logic over finite traces that can be
translated to equivalent finite-state automata; even temporal logics of the past [1].

In Section 2.3, we will define the Linear Dynamic Logic of finite traces (LDLf ) [5].
Its syntax combines regular expressions and propositional logic, just like Propositional
Dynamic Logic (PDL) does [9][27]. So, we will review regular expressions first.

2.2 Regular Temporal Specifications

Regular languages are the class of languages exactly recognized by finite state
automata and regular expressions [15]. So, we will use regular expressions as
a compact formalism to specify them. Regular expressions are usually said to
accept strings. Traces are in fact strings, whose symbols s ∈ 2F are propositional
interpretations of the fluents F . Such regular expressions would be:

ρ ::= ∅ | s | ρ1 + ρ2 | ρ1; ρ2 | ρ∗ (2.1)

where ∅ denotes the empty language, s ∈ 2F is a symbol, + is the disjunction of two
constraints, ; concatenates two expressions, and ρ∗ requires an arbitrary repetition

1Last is an abbreviation for ¬#true and it valuates to true at last instant only. So, ♦(Last ∧ ϕ)
means: eventually, at the last instant, ϕ is true.
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on ρ. Parentheses can be used to group expressions with any precedence. Regular
expressions are a basic formalism in computer science and they won’t be covered
here. The notable difference, though, is that the symbols found in the trace, hence
of the regular expression, are propositional interpretations (i.e. sets of true fluents).

Example 1. Briefly, the regular expression ρ := ({A}∗ + {B}∗); {} accepts the
following traces:

πa := 〈{A}, {A}, {A}, {}〉

πb := 〈{B}, {}〉

πc := 〈{}〉

but not πd := 〈{A,B}〉.

We call the regular expressions of equation (2.1) Regular Temporal Specifications
REf , because they are interpreted on finite linear temporal structures. Unfortunately,
writing specifications in terms of single interpretations can be very cumbersome,
as we lack a construct for negation and all sets need to match exactly. Instead,
we can substitute the symbols s ∈ 2F with formulae of Propositional Logic. In
fact, a propositional formula φ concisely represents all interpretations that satisfy it:
Sat(φ) := {s ∈ 2F | s |= φ}.

The new definition for the syntax of Regular Temporal Specifications REf is:

ρ ::= φ | ρ1 + ρ2 | ρ1; ρ2 | ρ∗ (2.2)

where φ is a propositional formula on the set of atomic symbols F . The language
generated by a REf ρ, denoted L(ρ), is the set of traces that match the temporal
specification. The only difference with regular expressions standard semantics is
that a symbol s ∈ 2F matches a propositional formula φ if and only if s ∈ Sat(φ). A
trace that match the regular expression π ∈ L(ρ) is said to be generated or accepted
by the specification ρ.

Example 2. As an example, let’s define a REf expression ρ := true; (¬B)∗; (A∧B)
and the following traces:

πa := 〈{}, {A}, {A}, {A,B}〉

πb := 〈{B}, {A,B}〉

πc := 〈{A,B}, {B}, {B}〉
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The first two traces are accepted by the expression, πa, πb ∈ L(ρ), but the third
is not, πc 6∈ L(ρ). Of course, the symbols A and B may represent any meaningful
property of the environment that we may want to ensure at some time instants.

2.3 Linear Dynamic Logic

2.3.1 Definition

We can now move on to the Linear Dynamic Logic of finite traces (LDLf ). This
logic was first defined in [5]. The definition we see here, also adopted in this thesis,
is a small variant that can also be interpreted over the empty trace, πε = 〈〉, unlike
most logics, which assume a non-empty temporal domain T . This definition appears
in [4].

Definition 1. A LDLf formula ϕ is built as follows:

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | 〈 ρ 〉ϕ

ρ ::= φ | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗
(2.3)

where tt is a constant that stands for logical true and φ is a propositional formula
over a set of symbols F . We also define the following abbreviations:

ff := ¬tt [ ρ ]ϕ := ¬〈 ρ 〉¬ϕ φ := 〈φ 〉tt

End := [ true ]ff Last := 〈 true 〉End

together with all those of propositional logic, which are all to be considered part of
the language.

The syntax just defined is really similar to PDL [9], a well known and successful
formalism in Computer Science for describing states and events of programs. However,
LDLf formulae are interpreted over finite traces instead of Labelled Transition
Systems.

Example 3. All the following formulae are all well-formed:

A ∨ ¬B

〈A;B∗ 〉(A ∧B)

[ true∗ ]¬C

[A∗ ]〈 ¬B 〉tt ∧ [true∗;C]ff

[A?;B ]B
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Instead, these are not:

〈 tt 〉A 〈A 〉 [A ]B [A ]B B?

Before moving to the semantics, we can intuitively understand the meaning
of these constructs. A LDLf formula ϕ is a combination of temporal expressions,
〈 ρ 〉, [ ρ ], and propositional formulae. The former are modal expressions that allow
to make statements that refer to future instants. 〈 ρ 〉ϕ states that, from the current
step i, there exists a future instant j, such that the path π(i, j) is accepted by the
REf ρ, and ϕ is satisfied at step j. Essentially, as in PDL, regular expressions are
used to select some future states in which the formulae that follow should hold.
Similarly, [ ρ ]ϕ states that, from the current step, all executions satisfying ρ are such
that their last instant satisfy ϕ. There is a clear similarity between 〈 〉, [ ] operators
and ∃, ∀ from first-order logic, because we defined them to obey a similar relation to
the De Morgan rule. In fact, if we consider the set Sρ of future instants that are
selected by a regular expression ρ, 〈 ρ 〉 can be read as “there exists one instant in Sρ
such that …”, and [ ρ ] is read as “for all instants in Sρ …”.

The LDLf semantics is defined in terms of finite traces. We denote with |π| the
length of the trace π, i.e. the total number of time instants. Also, for non-empty
traces, last refers to the index of the last instant in the sequence: last := |π| − 1.

Definition 2. Given a finite trace π, we inductively define when a LDLf formula ϕ
is true in π at time i, in symbols π, i |= ϕ, as follows:

π, i |= tt

π, i |= ¬ϕ iff π, i 6|= ϕ

π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2

π, i |= 〈φ 〉ϕ iff i < |π| and π(i) |= φ and π, i+ 1 |= ϕ

(for a propositional formula φ)

π, i |= 〈 ρ1 + ρ2 〉ϕ iff π, i |= 〈 ρ1 〉ϕ ∨ 〈 ρ2 〉ϕ

π, i |= 〈 ρ1; ρ2 〉ϕ iff π, i |= 〈 ρ1 〉〈 ρ2 〉ϕ

π, i |= 〈ψ? 〉ϕ iff π, i |= ψ and π, i |= ϕ

π, i |= 〈 ρ∗ 〉ϕ iff π, i |= ϕ or

i < |π| and π, i |= 〈 ρ 〉〈 ρ∗ 〉ϕ and ρ is not test-only

We say that ρ is test-only if it is a REf whose atoms are only tests ψ?.

Definition 3. A LDLf formula ϕ is true in (or, is satisfied by) a trace π, written
π |= ϕ, if π, 0 |= ϕ.
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Definition 4. A LDLf formula ϕ is satisfiable if there exists a trace that satisfy it;
it is valid if it is true in every trace. A formula ϕ logically implies a formula ϕ′, in
notation ϕ |= ϕ′, if for every trace π, we have that π |= ϕ implies π |= ϕ′.

Example 4. We’ll now list few examples that may help to better understand the
semantics just defined. Given the following trace,

πa := 〈{A}, {A}, {A,B}〉

we have2:

πa, 2 |= A ∧B πa, 1 6|= B

πa |= 〈A∗ 〉(A ∧B) πa 6|= [A∗ ]B

πa |= [ (¬B)∗ ]A πa 6|= 〈A;B 〉tt

Now that the fundamental mechanics are clear, we can highlight some peculiarities
of the language:

• The test operator “?” is typical of PDL. In the middle of a REf computation,
I can check whether a condition is verified before moving on. As we can see
from Definition 1, the condition is a full LDLf formula; so it acts as a powerful
look-ahead operation.

• The two expressions true and tt may mistakenly look equivalent at first sight.
Instead, tt is an atomic formula that is always satisfied (it valuates to logical
true); while true is a propositional formula and, as such, it is an abbreviation
for 〈 true 〉tt. The latter is satisfied if and only if there exists at least one next
instant in the trace.

• According to the semantics of 〈φ 〉ϕ, if we valuate this formula on the last
instant of a trace, ϕ needs to be verified at step last + 1. This is fine, indeed.
As the truth of π, i |= ϕ, with i ≥ |π|, is perfectly defined in LDLf (and it’s
equivalent to 〈〉 |= ϕ).

The last observation has some profound consequences that we should consider
when writing the formulae. Let’s suppose we want to encode that A must always
hold, just like the LTLf sentence “always A”, �A. The LDLf formula [ true∗ ]A
doesn’t represent this concept; instead, it is unsatisfiable. What we’re actually
saying is that at each point of the trace, even at the end, A must follow; which is
impossible. What we meant is [ true∗ ](A ∨ End), or [ true∗; (¬End)? ]A.

2We shouldn’t get confused about the different uses of the angle brackets: in 〈{A}, {A,B}〉, they
delimit a sequence of sets (that is a trace); in the formula 〈A∗; true 〉B, instead, they represent the
temporal operator containing a regular temporal specification.
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In [5] (De Giacomo and Vardi) some important theorems have been established
for LDLf 3:

Theorem 1. LTLf and REf formulae can be translated to LDLf in linear time.

Theorem 2. LDLf has the same expressive power of MSO (Monadic Second-Order
logic) over finite traces.

Theorem 3. Satisfiability, validity and logical implication for LDLf formulae are
PSPACE-complete.

2.3.2 Automaton translation

Automata are a well-established common formalism for talking about languages.
The set of traces that satisfy a formula form a language, in fact. What we’re looking
for is an equivalent automaton Aϕ that accepts exactly the same traces that satisfy
a given LDLf formula ϕ. As we will see, this translation is indeed possible, because
to every LDLf formula, it can be associated an equivalent alternating automaton on
finite words. We assume the reader is acquainted with basic automata theory, such
as DFAs, NFAs [15].

Alternating automaton

Definition 5. An Alternating Automaton on finite Words (AFW) is a tuple A :=
〈Σ, Q, q0, δ, F 〉, where Σ is a finite nonempty alphabet, Q is a finite nonempty
set of states, q0 ∈ Q is the initial state, F ⊆ Q is a set of final states, and
δ : Q× Σ→ B+(Q) is the transition function. B+(Q) denotes the set of all positive
boolean functions composed from the set of atoms Q, together with true and false.

Let’s define a word w := σw′, with σ ∈ Σ and w′ ∈ Σ∗. In a Nondeterministic
Finite-state Automaton (NFA), a transition δ(q0, σ) = {q1, q2, q3} means that input
word, w, is accepted iff w′ is accepted by any of the runs continuing from q1, q2, or
q3 (a run accepts if it ends up in a final state). We could also write this transition
as δ(q0, σ) = (q1 ∨ q2 ∨ q3), because the agent can “choose” among these states.
The dual operation is to require that all the following runs needs to be accepting:
δ(q0, σ) = (q1∧q2∧q3). The transition function of an AFW adopts boolean functions
without negations to allow both conjunctions and disjunctions. For example, we
may write δ(q0, σ) = q1∧ (q2∨ q3). Due to conjunctions, the AFW is usually thought
to be in multiple states at the same time. An AFW, A, accepts a word w iff there
exists a run of A on w such that all the current states at the end of the computation

3The following theorems have been proved in [5] for the original definition of LDLf , which is
slightly different. The same results are valid for the empty trace variant presented here.
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are either final or are labelled with true4. For a more precise description of runs and
acceptance condition of AFWs, see [29].

Surprisingly, alternating automata have the same expressive power as NFA, but
they are exponentially more succinct. So, it is possible to transform any AFW to an
equivalent NFA that has an exponentially bigger state space. Therefore, we can also
build an equivalent Deterministic Finite-state Automaton (DFA) through a double
exponential transformation. The AFW-to-NFA transformation is provided in [29].

Delta function

In this section, given a LDLf formula ϕ, we define its associated AFW, Aϕ :=
〈Σ, Q, q0, δ, F 〉. The alphabet, Σ := 2F , is the set of all propositional interpretations
for the fluents F (we will indicate them with Π ∈ Σ). It will be handy to use LDLf
formulae to refer to the states q ∈ Q: each formula will be an (implicitly quoted)
identifier for a state. Formally, the set Q is the Fisher-Ladner closure of ϕ extended
with two special constructs, but we don’t need to define it explicitly. The initial
state is q0 := ϕ. The set of final states is empty, F := {}, so acceptance can only
be ensured by reaching true. We now assume that the formula ϕ has been already
transformed in Negation Normal From (NNF), trough a function nnf (·). A formula
is in NNF if negations only appear in front of atomic propositions. We can finally
define the transition function, also called the delta function, as:

δ(tt,Π) = true

δ(ff ,Π) = false

δ(φ,Π) = δ(〈φ 〉tt,Π) (φ propositional)

δ(ϕ1 ∧ ϕ2,Π) = δ(ϕ1,Π) ∧ δ(ϕ2,Π)

δ(ϕ1 ∨ ϕ2,Π) = δ(ϕ1,Π) ∨ δ(ϕ2,Π)

δ(〈φ 〉ϕ,Π) =

E(ϕ) if Π |= φ

false if Π 6|= φ
(φ propositional)

δ(〈ψ? 〉ϕ,Π) = δ(ψ,Π) ∧ δ(ϕ,Π)

δ(〈 ρ1 + ρ2 〉ϕ,Π) = δ(〈 ρ1 〉ϕ,Π) ∨ δ(〈 ρ2 〉ϕ,Π)

δ(〈 ρ1; ρ2 〉ϕ,Π) = δ(〈 ρ1 〉〈 ρ2 〉ϕ,Π) (2.4)

δ(〈 ρ∗ 〉ϕ,Π) = δ(ϕ,Π) ∨ δ(〈 ρ 〉F〈 ρ∗ 〉ϕ,Π)

δ([φ ]ϕ,Π) =

E(ϕ) if Π |= φ

true if Π 6|= φ
(φ propositional)

4δ(q, σ) = true can be considered as an empty conjunction of states: this branch of the computa-
tion accepts without the need of further tests.
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δ([ψ? ]ϕ,Π) = δ(nnf (¬ψ),Π) ∨ δ(ϕ,Π)

δ([ ρ1 + ρ2 ]ϕ,Π) = δ([ ρ1 ]ϕ,Π) ∧ δ([ ρ2 ]ϕ,Π)

δ([ ρ1; ρ2 ]ϕ,Π) = δ([ ρ1 ][ ρ2 ]ϕ,Π)

δ([ ρ∗ ]ϕ,Π) = δ(ϕ,Π) ∧ δ([ ρ ]T[ ρ∗ ]ϕ,Π)

δ(Fϕ,Π) = false

δ(Tϕ,Π) = true

where E(ϕ) recursively replaces in ϕ all occurrences of atoms of the form Tψ and Fψ
by E(ψ); and δ(ϕ, ε) is defined inductively as above, except for the following base
cases:

δ(〈φ 〉ϕ, ε) = false δ([φ ]ϕ, ε) = true (φ propositional)

The role of Tϕ and Fϕ is to valuate as true/false or as ϕ depending on the
context. This allows to respect the “test-only” requirement in Definition 2 for the
star operator.

Let ϕ be an LDLf formula and Aϕ the corresponding AFW of equation 2.4.
Then, for every trace π, we have that π |= ϕ if and only if Aϕ accepts π. Also, the
space-size of Aϕ is linear in the size of ϕ. Since the emptiness problem for AFWs is
PSPACE-complete, we get a proof for Theorem 3 on page 13.

DFA translation

DFAs are the easiest automata to visualize and simulate. A LDLf formula can
be translated to an equivalent DFA through the following transformations: LDLf
→ AFW → NFA → DFA. The asymptotic worst-case cost of this procedure is
already the best known, which doubly-exponential on the size of the formula. Still,
it is possible to combine some or all of these steps in a single algorithm, that may
allow some optimizations. A LDLf -to-NFA algorithm is presented in [4]; while a
LDLf -to-DFA is described in [8].

These automata have an input alphabet Σ of size 2|F|. This means that a
complete DFA has a large number of arcs. Instead of connecting each pair with
propositional interpretations, which can be a huge enumeration of sets, we use
formulae of propositional logic. The automaton traverses a transition qj

φ−→ qi if it is
in state qj and it receives an input Π such that Π |= φ. In a deterministic automaton,
from each state, exactly one transition is satisfied for any input. The formulae φ are
just a form of “syntactic sugar” that often leads to more concise visualizations of
the automata. An example of this equivalence is shown below:

q1 q2 q1 q2

{A,B,C}

{A,B}

A ∧B
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Chapter 3

Reinforcement Learning

3.1 Basic principles

In this section, we will briefly review the most important aspects of classic Rein-
forcement Learning (RL). These concepts are relevant because they are also found
in Deep Reinforcement Learning (Deep RL), which is a central component of the
agent we will design. Excellent references for these topics are [25], [24], and [21] for
graphical models.

In AI, we commonly isolate two entities, the agent and the environment, which
continuously interact. At each instant, the agent receives observations from the
environment and it executes actions in response. In RL specifically, the agent observes
the current state of the environment and a numerical reward. The environment
produces high rewards in response to desirable events. The agent’s goal is to
maximize the rewards received. The basic setup is illustrated in Figure 3.1.

3.1.1 Markov Decision Processes

Most RL algorithms assume that the environment dynamics can be modelled with
a Markov Decision Process (MDP). They do so, because under the independence
assumptions taken by MDP, it’s possible to efficiently find the optimal agent’s policy.

Definition 6. A Markov Decision Process is a tuple 〈S,A, T,R, γ〉, where: S is the

Agent

Environment

reward
r

state
s

action
a

Figure 3.1. How agent and environment interact in RL.
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at−1 at

st−1 st st+1

rt rt+1

Figure 3.2. The directed graphical model of an MDP.

set of states of the environment; A is the action space; T : S × A × S → R is the
transition function, which, for T (st, at, st+1), returns the probability p(st+1 | st, at)
of the transition st

at−→ st+1; R : S×A×S → R is the reward function; and γ ∈ [0, 1]
is called “discount factor”1.

In a RL problem, the functions T and R are unknown. The agent can only learn
them by taking each action and observing the outcomes. Even if they are unknown,
by assuming that they can be modelled with functions S ×A× S → R, we introduce
some Markov assumptions. In particular, we assume that the next state of the
environment is conditionally independent on the whole history, given the previous
state and action: st+1 ⊥ s0, . . . , st−1 | st, at. Similarly, the reward only depends on
the last transition of the environment. Although it’s not required by the model,
it is common that rewards are computed just from desirable configurations of the
environment st, not from specific transitions (st−1, at−1, st). All these assumptions
are summarized in the Directed Graphical Model (DGM) of Figure 3.2. In a
DGM, edges indicate direct conditional probabilities, while missing arcs indicate
conditionally independent variables. In Figure 3.2, the lack of any arrow between
st−1 and st+1 means that future states, hence the rewards, do not depend on the
past history, given the current state st. This is the essence of a Markov assumption.

Example 5. Tic-Tac-Toe, Chess and many other board games can be modelled
with an MDP. Even games with dice, such as Backgammon. To do so, we define as
state space S the set of configurations of the board, and a reward function R(s) that
returns 1, if the configuration s is a win, −1 for a loss, and 0 otherwise. Even though
most games are deterministic, the presence of an opponent makes the transition
function T of the MDP nondeterministic. What these games have in common, is
that the player gets to see the complete state of the game, which is the current
configuration of the board. Future states of the game and rewards only depend
on the current situation, not on the whole play. In Chess, for example, we can

1In this chapter, variables with an integer subscript or index refer to the value at the discrete
time indicated.
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determine whether a configuration is a win or loss just by looking for a checkmate;
there is no need to ask the players how the game has been carried out.

Proving that Markovian T and R exist is easy for board games, because the
rules of the game define them. As we will see in Section 4.1, when T is unknown, as
always happens in the real-world, it’s much more difficult to prove that we’re in fact
facing an MDP.

3.1.2 Optimal policies

The policy is the criterion the agent uses to select the actions to perform. If the
environment dynamics can be modelled with an MDP, the optimal action at time t
only depends on st. So, there must exist an optimal policy as ρ∗ : S → A. However,
due to common estimation errors, it is always better to prefer nondeterministic
policies, which return a probability distribution over the actions. The action at time
t will be sampled according to at ∼ ρ(st). This dependency is represented by the
dotted arrows of Figure 3.2. A policy that is a function only of the state is called
“stationary”.

We will now introduce few basic quantities of RL that serve to define what it
means for an action or a policy to be optimal. The discounted return G is the
combination of all rewards collected:

G := r0 + γ r1 + γ2r2 + · · · =
T∑
t=0

γtrt (3.1)

The discount factor, 0 ≤ γ ≤ 1, decides the relative importance of immediate and
future rewards. Usually, this factor is strictly less than 1 because this stimulates the
agent to achieve rewards as soon as possible. It also produces a finite discounted
reward, even for an infinite run, where T → ∞. Since the environments we will
experiment with are video games, each play is an episode and the total number of
steps in each episode is finite.

It is now clear, that the optimal policy should always maximize the expected
discounted return. The value function of a policy ρ computes this quantity from
each state s:

vρ(s) := Eρ[G | s0 = s] (3.2)

which is the expected value of G, when the agent starts from state s and it follows
the policy ρ. The notation Eρ indicates that the estimation assumes that the actions
are sampled according to ρ. Finally, we can define the optimal policy ρ∗ as the one
maximizing the value function at all states:

ρ∗ : vρ∗(s) ≥ vρ(s) ∀s ∈ S, for all ρ (3.3)
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The typical Reinforcement Learning problem is to find the optimal policy for an
MDP with unknown T and R.

The action-value function of a policy ρ is a similar measure to the value function:

qρ(s, a) := Eρ[G | s0 = s, a0 = a] (3.4)

which also forces the first action to be a. Since the agent can only observe outcomes
of single actions, this is usually a much more convenient form for updating the
estimate of the expected discounted return. Most important, the optimal policy can
be simply expressed as:

ρ∗(s) = arg max
a∈A

qρ∗(s, a) (3.5)

So, instead of learning the optimal policy directly, we can learn the optimal state-
value function, qρ∗ (also denoted with q∗). Fortunately, we don’t need ρ∗ to valuate q∗

because, assuming optimality, we know it satisfies the Bellman optimality equation:

q∗(s, a) = E
[
rt+1 + γmax

a′
q∗(st+1, a

′) | st = s, at = a
]

(3.6)

=
∑
s′,r′

p(s′, r′ | s, a)
(
r′ + γmax

a′
q∗(s′, a′)

)
(3.7)

for any t.
Many learning algorithms exist for estimating q∗. Briefly, on-policy algorithms,

estimate qρ of the policy ρ that is being used and improved, ρ → ρ∗; off-policy
algorithms, instead, act according to any exploration policy ρe and directly estimate
q∗. Two famous algorithms in these classes are SARSA and Q-learning, respectively.
The one used in this thesis is derived from the latter.

3.1.3 Exploration policies

If q∗ were know, equation (3.5) would be enough to always select the optimal action.
Generalizing for any q, we call that the greedy policy, because it always selects the
best action according to q:

ρq(s) := arg max
a∈A

q(s, a) (3.8)

Unfortunately, while learning, we only have a rough estimate of the optimal function,
q̂ ≈ q∗. Being greedy with respect to sub-optimal policies is dangerous, because the
agent may deterministically select actions that repeatedly lead to dead-ends. To
mitigate this issue, we can choose some actions at random. The ε-greedy policy is
defined as:

ρq,ε(s) :=

random action a ∈ A with probability ε

arg maxa∈A q(s, a) otherwise
(3.9)
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Figure 3.3. Probability of a random action over time: ε with linear decay (left), ε with
exponential decay (right).

More precisely, random actions are sampled from a uniform distribution over the set
of actions A. By making random moves, the agent might escape from suboptimal
environment configurations. If ε = 1, definition (3.9) reduces to the random policy:

ρr(s) := random action a ∈ A (3.10)

When training begins, the agent has no clue about the optimal q-function. It
can just try out all actions by executing the random policy. In this phase, the agent
receives low rewards but observes a lot of different outcomes for its actions. This
is the purpose of exploration. After a while, the agent can begin to trust in its
predictions. So, it may gradually choose the most promising actions in order to
achieve higher rewards. This is the exploitation phase. The exploitation–exploration
trade-off is a fundamental problem in AI. Unfortunately, there’s no general solution
in RL, because the agent has no way to tell when the policy is “good enough”.
Usually, we need to try some compromises between the two.

To address this issue, during training, the agent can act according to a policy
that is initially stochastic but gradually approaches the greedy policy, over time.
There are many ways to do this. One of the most simple options is to select the
ε-greedy policy of equation (3.9) with ε that varies over time according to some
schedule. Figure 3.3 shows two common possibilities. On the left-hand figure, the
probability of a random action is linearly decreased over time, while on the right,
it follows an exponential decay. In both cases ε never becomes zero, because that
would effectively terminate the learning process. The rate of this decrease is a
hyperparameter that can be tuned.

The most common policies are those just described. They can be directly used
in a RL algorithm or combined to create more complex policies. With “exploration
policy” we refer to any policy that has a strong component of nondeterminism and
it’s suitable to drive the agent’s behaviour during training.
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Custom exploration policies

We’ll now define few other policies which we proposed and used in this thesis. Of
course, there is no better policy in general. The policies defined here might be
suitable for the environments we face, but may be inappropriate in many others.
They just happen to be useful for one class of environments.

The first one is an ε-greedy policy with action repetition. It chooses between
random and deterministic actions just like the ε-greedy. However, consecutive
random moves always execute the same action. This sequence of repetitions can be
interrupted by a deterministic move or by the threshold of maximum repetitions.
This policy may be useful in environments where the effect of a single action is very
small. This is the case, for example, for the exploration of mazes and corridors. The
random policy wouldn’t allow the player to cover large distances, because of the
uniform sampling between left and right.

The second policy is an ε-greedy with random ε. As we will see in Section 5.6,
when we need to observe the environment dynamics, we need to see the observations
received in response to many different stimuli. However, when we apply ε-greedy
to a capable agent, we see the following pattern: ε determines the agent’s ability.
To a fixed ε corresponds some average ability, and the cumulative rewards achieved
tend to be very similar. Following this intuition, we define a policy that samples a
random ε for each episode. So, at different episodes, the agent can explore both the
early stages and more distant environment states.

The last policy we define addresses the same problem as the previous one,
producing very diverse trajectories, but in environments with sparse rewards. When
the reward is sparse, we can read it as successful completion of some sub-task. In
this policy, for each episode, we sample a random natural number, that we call
“checkpoint”. When the number of rewards collected is lower than the checkpoint, the
agent behaves mostly in a deterministic way, because the purpose is just to proceed.
When the number of rewards reaches the checkpoint number, we act according to
a random policy. The idea is to explore the environment state space at different
depths.

3.2 Deep Reinforcement Learning

Classic RL algorithms, such as SARSA and Q-learning, are tabular methods. In fact,
they store and update the estimate for each pair (s, a) independently. Unfortunately,
this requires discrete and small states and actions spaces. To overcome this very
limiting assumption, we need parametrized value functions and policies. Deep
Reinforcement Learning (Deep RL) is a recent field of RL in which Neural Networks
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Figure 3.4. Initial frames of some Atari 2600 games (left to right): Space Invaders,
Breakout, Montezuma’s Revenge.

(NN) are used as powerful function approximators for policies or value functions.
The main advantage of NNs, and parametric models in general, is that they can

be trained in high-dimensional and continuous input spaces. In fact, a good fit does
not require a complete exploration of the input space, which may be unfeasible or
impossible. Instead, they are trained with some form of Stochastic Gradient Descent
on the set of parameters from input-output samples. Then, the model can be able
to generalize to inputs that have been never observed, in a meaningful way.

Unfortunately, due to approximation and parametrization, Deep RL algorithms
allow very little guarantees about convergence and optimality. Even if the input
space would be explored completely, updates for recent samples would also affect
the regions previously visited. In fact, any effective Deep RL algorithm introduces
some techniques in order to generate a stable training.

3.2.1 Popular testbed for Deep RL: Atari games

The Atari 2600 is a video game platform that was developed in 1977. There are
hundreds of classic games available to play: Space Invaders, Ms. Pacman, Breakout
and many others. The screen is 160 pixels wide and 210 pixels high, with RGB
colors of 8-bits depth. The joystick has 9 positions (3 for each axis) and one button,
for a total of 18 possible actions. For this reason, we’ll only focus on RL methods
for discrete action spaces.

The Arcade Learning Environment [2] is a simple interface to the Atari 2600
emulator. It allows agents to play and be trained on these games. At each step, the
agent chooses one of the 18 actions available and receives in return a frame of the
game and a reward. The reward is the increment in the player’s score for the original
game. This is really the same interface that a human player would use. Figure 3.4
shows the frames from few games in this collection.

Although these games come from an early stage of video games development, they
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represent the appropriate challenge for current (Deep) Reinforcement Learning agents.
In fact, many papers tested their RL algorithms on these games [20][19][28][13].
In this thesis, we also tested with some of these environments. We will also show
how improve on the hardest game in this collection for a RL agent: Montezuma’s
Revenge.

3.2.2 Deep Q-Network

The Deep Q-Network (DQN) [20] was the first algorithm to successfully combine deep
learning models and Reinforcement Learning. Although many basic ideas presented
here have been already introduced by the Neural Fitted Q iteration algorithm [23],
DQN addressed some causes of training instability. They also demonstrated that
exactly the same agent can be trained in many Atari games and achieve human-level
performances in many of those [19]. These promising results sparked a lively interest
in Deep RL, recently.

In DQN, the state-action value is approximated by a deep neural network
Q(s, a; θ), on the parmeters θ, that we call Q-Network. The purpose of learning, is
to train this network to approximate the optimal q-function: θ̂ : Q(s, a; θ̂) ≈ q∗(s, a).
Then, the estimated optimal policy will be:

ρ̂(s) = arg max
a∈A

Q(s, a; θ̂) (3.11)

A trained network, for each input (s, a), should return the expected value of
some target ys,a. To do so, we select the parameters that minimize the squared
difference between the estimates and the targets:

loss(θ) :=
(
Q(s, a; θ)− ys,a

)2 (3.12)

Since this is a Q-Network, the targets are the optimal state-action values q∗(s, a)
that the net should estimate. The loss (3.12) contains some random variables. So, we
minimize it through any stochastic optimization algorithm. In Stochastic Gradient
Descent (SGD), at each step t, we observe an input (st, at) and the associated target
yt. Then, we take a small step toward the negative gradient of the loss:

θt+1 = θt − α∇θ
((
Q(st, at; θ)− yt

)2)∣∣∣
θ=θt

(3.13)

in which 0 < α < 1 is a small learning rate. This equation is not the only update rule
possible. There are more advanced optimization algorithms, such as: Momentum,
RMSprop and Adam. In this thesis, we’ve mostly experimented with Adam.

What has just been described is the usual way of fitting a neural network to a
dataset of samples. In RL, however, the targets q∗(st, at) are unknown, because they
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depend recursively from the same optimal q-function that we’re trying to learn (see
equation (3.7)). In classic RL, this is not a problem: the 1-step approximation of
the q-values (derived from equation (3.7)),

yt := rt+1 + γmax
a∈A

q̂(st+1, a) (3.14)

or the n-step approximation, are a valid targets for the function q̂. By updating
toward these values on the whole input space, convergence is guaranteed. In other
words, targets can be estimates themselves.

With neural networks, instead, any update to the parameters also affects the
target, because the weights have a global influence on the function. It’s not possible
apply a correction for just one tiny region of the input space (nor it’s desirable, after
all). It has been shown [23], that due to this effect, propagating errors slow down
convergence or even render the training unstable. To address this issue one must
ensure that the targets do not move much.

The DQN [20] algorithm addresses this issue in two ways. First, the targets in
equation (3.14) are not generated by the network that is being trained, Q(s, a; θ),
but they are computed from a second net, Q(s, a; θ′). Every C iterations, the target
net is updated to match the trained net, with the assignment: θ′ ← θ. This keeps
the targets constant for C steps and helps to stabilize the training.

Second, the network is not trained from the last sample, but from transitions of
the recent experience. At each step, the agent acts according to some exploration
policy, at ∼ ρe. Each transition, of the form 〈st, at, rt+1, st+1〉, is recorded in a
buffer of size nr, called “experience replay”. Then, at each training step, we sample
a number of nb transitions, thus creating a batch, and we perform an update
θi+1 = θi − α gi on the cumulative gradient gi of the whole batch.

DQN also includes a number of heuristics that greatly help the training but are
specific to the Atari 2600 environments:

• Rewards can be really high, so they are limited in the range [−1,+1]; this
is called reward clipping. It helps to keep the same learning rate for diverse
games.

• The agent has a single life available. When a life is lost, the episode ends. This
prevents the agent to rely on restarts.

• The frames are slightly down-scaled to further reduce the resolution, they
are transformed to gray-scale and mapped to the range [−1,+1]. These are
common preprocessing steps for NNs.

• Every observation is composed by the last 4 frames stacked together. This
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allows the agent to observe how the objects in the scene move. See Section 4.1
and Example 7 on page 30.

The algorithm used in this thesis is called Double DQN [28]. It is a slight variant
of DQN, so all details mentioned so far also apply. The motivation of this algorithm
is a known issue of Q-learning: it is likely to make overoptimistic value estimates.
To show this, let’s rewrite the targets of (3.14) as:

yt := rt+1 + γ Q(st+1, arg max
a∈A

Q(st+1, a; θt); θt) (3.15)

where the estimates q̂ are computed with the Q-Network. This form makes more
evident that the same model is used both to select the next greedy action and to
estimate the q-value of state st. As result, any action with an overestimated q-value
will be selected and its value propagated. To remove this bias, Double DQN decouple
the two operations by using different sets of parameters, θ(1) and θ(2). The targets
yt are computed as:

yt := rt+1 + γ Q(st+1, arg max
a∈A

Q(st+1, a; θ(1)
t ); θ(2)

t ) (3.16)

Then, just the parameters θ(1) are updated toward this targets; this is called the online
network. With random chance, the roles of the two parameters are continuously
swapped at each step.

To compute the target, we need to compute the q-values for all actions in state
st+1. To speed up this computation, the network is defined as a function that takes
in input a state and computes a vector of state-action values, one for each action. So,
just one forward pass is required to select the next action. Common Q-Networks for
images are composed of a number of convolutional layers and some fully-connected
layers. The specific structure may change, and the network used will be defined in
the implementation section.
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Chapter 4

Reinforcement Learning for
non-Markovian rewards

4.1 Non-Markovian goals

The goal of a RL agent is to maximize the cumulative rewards received. A goal, or
a task, is said non-Markovian if the rewards do not satisfy the Markov assumption
on rewards, i.e:

rt+1 6⊥ si, ai, ri | st, at for some t, i, with 0 ≤ i < t (4.1)

Of course, this can happen only if the environment cannot be modelled with an
MDP. Excellent algorithms exists for MDPs; instead, non-Markovian goals are much
more difficult to learn. There are two main causes for non-Markovian rewards:
partial observations and temporally-extended tasks. We’ll thoroughly analyze both
scenarios.

4.1.1 Partial observations

Up to this point, we didn’t need to distinguish between observations and states. In
fact, we assumed that the agent can directly observe the environment states and act
accordingly (we defined the policy as a function of the state). Unfortunately, this is
often not the case: we only get to see something that depends on the current state,
but it’s not. These systems can be modelled with a Partially Observable Markov
Decision Process (POMDP). POMDPs are a generalization of MDPs for partial
observations. From now on, we will denote with S the environment state space
and with Ω the observation space. Formally, a discrete-time POMDP is a 7-tuple
〈S,A, T,R,Ω, O, γ〉, where S,A, T,R are defined as in MDPs, Ω is the observation
space, and O is the (possibly stochastic) observation function O : S × Ω→ R.
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ot−1 at−1 ot at

st−1 st st+1

rt rt+1

? ?

Figure 4.1. The Directed Graphical Model of a POMDP. White nodes are unobservable.
For simplicity, the rewards in this graph depend just on the current state st, not on
transitions (st, at, st+1).

The graphical model of a POMDP is shown in Figure 4.1. The sequence of states
〈s0, s1, . . . 〉, which is the environment dynamics, still satisfies the Markov assumption
(it forms a Markov chain). In a POMDP, this dynamics exists but is unobservable.
What we can see, instead, is a sequence of observations 〈o0, o1, . . . 〉. Each of them
is generated from the corresponding state, through the (possibly nondeterministic)
observation function. Actions and policies can only act in response to observations,
not states.

The dotted arrows in Figure 4.1 have a question mark on them, because that
dependency is our choice. As designers, we’re free to select the informations that
the agent should take into account when selecting an action. Is the last observation
enough to decide? Or, more precisely, among all possible policies, do POMDPs
always admit an optimal policy of the form ρ∗ : Ω→ A? Unfortunately, the answer
is no. Other informations are needed.

When the POMDP transition and observation functions are known, a common
solution is to estimate the current unobservable state and decide the action from
this belief. With deterministic functions, the agent can iteratively restrict the set
of possible states by eliminating those inconsistent with the observations received.
More commonly, these functions are nondeterministic, and the estimation algorithm
is some recurrent probabilistic inference. In both cases, the algorithm would produce
a belief of the current state, denoted with b(st). We can represent the general
procedure, at any instant t, with the following computation:

〈o0, o1, . . . , ot〉
b(st) at

〈a0, a1, . . . , at−1〉

Since these beliefs depend on the whole sequence of observations, computing the
next action from b(st) also makes it dependent from the whole history.
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hidden dynamics

MDP assumption

st−1 st st+1

at−1
rt

at
rt+1

ot−1 ot ot+1

Figure 4.2. The dotted arrows represent the dependencies in a POMDP model. Solid
arrows show the MDP assumption over the same observable. This is usually a very
poor approximation of the real dynamics.

Standard RL algorithms cannot be applied to POMDPs, because the state space
is not observable. Also, since we allow the transition and observation functions to
be unknown, no estimation could be carried out anyway. There is a clear difference
between MDPs and POMDPs. Still, RL algorithms are frequently applied to
POMDPs. Not surprisingly, they perform very poorly on these environments. This
is a subtle mistake, because determining whether we’re observing the state space is
the same as answering the following question: does the observation space capture
the “relevant” dynamics of the system? Or, more precisely, does an equivalent
MDP 〈Ω, A, TΩ, RΩ, γ

′〉, that produces the same rewards, exist? If both functions
TΩ : Ω×A× Ω→ R and RΩ : Ω×A× Ω→ R exist and produce the same rewards,
the environment can be successfully modelled and solved as an MDP. However, since
this is often not the case, we cannot apply RL algorithms to POMDPs. Figure 4.2
represents this situation.

Example 6. As we’ve seen from Example 5 on page 18, the game of Chess can be
modelled with an MDP if we consider as states the vectors of positions of all pieces
on the board. Let’s suppose, instead, the observations available are images of the
board after each move (if the pieces can be distinguished, these could even come
from a real play). Each image completely captures the state of the game because, for
each move of the agent and the opponent, we’re able to accurately predict the image
that will follow. This is a transition TΩ over images. Similarly, a reward function
RΩ can simply return +1 or −1 for images with checkmates and 0 otherwise. These
functions can be unknown and don’t need to be defined.

Suppose, instead, that the agent can only observe the left-hand side of the board
(columns a-d, for example). In this case, each image provides an incomplete view
over the state of the game. In fact, in order to determine the best action we must
consider whether there are some attacking pieces on the hidden region. In this case,
classic RL algorithms would perform poorly, because without any memory about
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the position of the hidden pieces, it’s not possible to predict the next image and
reward from the current observation.

Example 7. Let’s consider a classic control problem: the swing-up of an inverted
pendulum. A pendulum can freely rotate by 360° around a hinge. The agent, at each
discrete time step, can apply torques to this active joint. The goal is to stabilize the
pendulum in the upward position, which is the configuration of unstable equilibrium.
In order to solve this problem with Reinforcement Learning, we need to define the
spaces S and A of the MDP. In this domain, actions are continuous torques, which
may be represented in a normalized range: A := [−1,+1] ⊆ R. The angle of the
pendulum θ with respect to some fixed reference completely determines the position
of the masses. Is the reward Markovian with respect to S := {θ ∈ [−π,+π]}? No,
because the agent is rewarded when the pendulum stops in the upward position. So,
the appropriate state space consists of both θ and θ̇.

Including the momentum in the state space is very common for mechanical
systems. However, this can be also necessary for games. In fact, just looking at a
single frame, the agent has no clue about how all the elements in the picture are
moving. For example, in a video game where the agent has to hit a moving ball, the
optimal policy certainly needs to observe also its direction.

4.1.2 Temporally-extended goals

The previous section has shown how partial observations may falsify the Markov
assumption on rewards. A second possibility is to have a complete observation of
the state (Ω = S) but a task that is intrinsically non-Markovian. This is the case
when each reward is computed from the whole history of events

rt = R(〈s0, s1, . . . , st〉) ∀t ∈ Z (4.2)

with R : S∗ → R. The sequence of states π := 〈s0, s1, . . . , st〉 will be also called
execution trace. In general, with the term “trace” we indicate any sequence that
is produced during a run. We adopt a similar notation to those we’ve seen for
interpretations of temporal logics.

Goals defined by rewards of equation (4.2) are said “temporally-extended” because
they take into account multiple timesteps. Why should we define a reward function
that is explicitly non-Markovian? One possibility is that we want our agent to
drive the environment through a sequence of states, instead of just reaching a single
configuration. However, as we will see, we don’t need to restrict to sequences, because
we may define very complex reward functions.

Example 8. Let’s suppose the agent can control a light bulb through a switch,
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and we want the light to be set on, then off again. The agent will be rewarded if,
at the end of the episode, the light has been set on only once. The environment
is extremely simple: its state may be completely described by a Boolean variable,
lightOn, which reflects the status of the light. Still, in order to valuate whether the
task has been accomplished, it’s not sufficient to check whether the light is off at
the end of the episode; we also need to ensure that, during the whole episode, it has
been switched on only once.

We now define a model that, by generalizing MDPs, can describe this large class
of problems.

Definition 7. A Non-Markovian Reward Decision Process (NMRDP) [1] is a
tuple 〈S,A, T,R, γ〉, where S,A, T, γ are defined as for MDPs, and R : S∗ → R
is a non-Markovian reward function, which computes the reward at time t as
rt = R(〈s0, s1, . . . , st〉).

Every NMRDP admits an optimal policy as ρ∗ : S∗ → A, which computes actions
from the history of states. So, we’ll only consider policies with this form. In order to
define optimality, we would need to proceed as for MDPs, by defining value functions.
However, this is sightly more complex, since as a consequence of non-Markovian
rewards, value functions can only predict the future expected discounted return, if
the past history is given. They effectively compare policies on traces, rather than
single states. The simplest case is the valuation of any initial state, whose value
function is [1]:

vρ(〈s0〉) := Eρ

[
T∑
t=0

γtR(〈s0, s1, . . . , st〉)
]

(4.3)

Informally, an NMRDP policy ρ∗ is optimal if it maximizes the value function of
future states. However, we won’t further delve into the definition of optimality and
value functions, because common solution methods (that we’ll see in Section 4.2.1)
transform NMRDPs into standard MDPs, that we already know how to solve.

NMRDP with LDLf rewards

Non-Markovian reward functions have huge domains. Defining them by listing all
the traces that should be (positively or negatively) rewarded is unfeasible, even for
the simplest cases. Fortunately, as we already know from Chapter 2, temporal logics
are powerful formalisms that allow to concisely define groups of traces. So, a very
effective way to declare non-Markovian rewards is through a set of pairs {(ϕi, ri)mi=1},
where each ϕi is a LDLf formula and ri is its associated reward [4]. The reward ri

will be produced whenever a trace satisfies ϕi. So, the reward function is defined as:
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R(π) :=
∑

i :π|=ϕi

ri (4.4)

It follows that an equivalent way to define NMRDPs is: 〈S,A, T, {(ϕi, ri)mi=1}, γ〉.
In this thesis, rewards will be always declared with LDLf formulae. However,

the same discussion also applies to LTLf . Also, we may have noticed that the
adoption of temporal logics requires a state space that is composed of propositional
interpretations. This will be addressed in Section 4.2.2.

4.2 Reinforcement Learning with LDLf specifications

This section illustrates how to learn optimal policies for a large class of problems
among those introduced in Section 4.1. The main idea behind the techniques
presented here is to formulate an appropriate NMRDPs with LDLf rewards, and
to solve it through an equivalent Markov Decision Process. Since many learning
algorithms exist for MDPs, this translation can be considered as a solution for the
original problem.

4.2.1 RL for NMRDPs with LDLf rewards

RL for NMRDPs

Before looking at the construction, we need to define what is an equivalent MDP
and what are its properties.

Definition 8. [1] An NMRDP N := 〈S,A, T,R, γ〉 is equivalent to an extended
MDP M := 〈S′, A, T ′, R′, γ〉 if there exist two functions τ : S′ → S and σ : S → S′

such that:

1. ∀s ∈ S : τ(σ(s)) = s;

2. ∀s1, s2 ∈ S and s′
1 ∈ S′: if T (s1, a, s2) > 0 and τ(s′

1) = s1, there exists a
unique s′

2 ∈ S′ such that τ(s′
2) = s2 and T ′(s′

1, a, s
′
2) = T (s1, a, s2).

3. For any feasible trajectory 〈s0, a1, . . . , sn−1, an〉 of N and 〈s′
0, a1, . . . , s

′
n−1, an〉

ofM, such that τ(s′
i) = si and σ(s0) = s′

0, we have R(〈s0, a1, . . . , sn−1, an〉) =
R′(〈s′

0, a1, . . . , s
′
n−1, an〉).

Conditions 1 and 2 require that every feasible trajectory of the NMRDP can be
simulated with a trajectory of the MDP. Condition 3 forces corresponding trajectories
to produce the same rewards. So, the equivalent MDP completely captures the
dynamics of the NMRDP. As we will see, in order to do this, the new state space S′
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needs to include the old states S and some history-related informations. Since S′ is
always larger than S, the equivalent MDP is also called “extended”.

Definition 9. [1] Let ρ′ : S′ → A be a policy for the MDP M. The corresponding
policy ρ : S∗ → A of the NMRDP N is defined as ρ(〈s0, . . . , sn〉) := ρ′(s′

n) where
〈s′

0, . . . , s
′
n〉 is the corresponding trajectory for 〈s0, . . . , sn〉.

As we can see ρ′, is a stationary policy. A very important result that allows to
correlate the solutions between the two classes of problems is the following:

Theorem 4. [1] For any policy ρ′ for the MDP M, its corresponding policy ρ for
the NMRDP N , and s ∈ S, we have vρ(s) = vρ′(σ(s)). 1

As a corollary of the previous theorem, any optimal policy of the MDP has a
corresponding policy that is optimal for the NMRDP. This is is the result we were
looking for: by applying classic RL algorithms, we can learn optimal policies of
MDPs that apply to their equivalent NMRDP. In practice, we don’t need to translate
the policy ρ′ to the non-stationary equivalent ρ. It is possible to apply the trained
RL agent directly to the NMRDP, by continuously transforming each observation s

through the translation function σ : S → S′.

LDLf rewards

We will now define a specific MDP expansion for NMRDPs with LDLf rewards. In
fact, if the rewards are specified through LDLf or LTLf , it is possible to create
extended MDPs that are very compact. We recall that a NMRDP with LDLf rewards
is a tuple N := 〈S,A, T, {(ϕi, ri)mi=1}, γ〉, where S := 2F is a set of propositional
interpretations and ϕi are LDLf formulae on the set of fluents F .

First, using the methods presented in Section 2.3.2, we transform each reward
formula ϕi to its associated minimal DFA, Ai := 〈2F , Qi, qi0, δi, Fi〉. Then, we state
the following:

Definition 10. [4] Given an NMRDP with LDLf rewardsN = 〈S,A, T, {(ϕi, ri)mi=1},
γ〉, we define the equivalent extended MDP M := 〈S′, A′, T ′, R′, γ〉, where:

• S′ := Q1 × · · · ×Qm × S is the set of states

• A′ := A

• T ′ : S′ ×A′ × S′ → [0, 1] is defined as:

T ′((q1, . . . , qm, s), a, (q′
1, . . . , q

′
m, s

′)) :=

T (s, a, s′) if ∀i : δi(qi, s′) = q′
i

0 otherwise
1In this equation, v refers to the value function for NMRDPs and MDPs respectively.
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• R′ : S′ → R is defined as2:

R((q1, . . . , qm, s)) :=
∑

i : qi∈Fi

ri

As we can see from this definition, the extended MDP augments the original
model with all the automata Ai corresponding to the m temporal goals. After
each observation, both the original system and every component Ai are advanced
accordingly, in parallel. The reward function, which is now Markovian, can produce
the same rewards as in the original formulation (see equation (4.4)) because all the
necessary information has been included in the state space.

Theorem 5. [4] The NMRDP with LDLf rewards N = 〈S,A, T, {(ϕi, ri)mi=1}, γ〉 is
equivalent to the MDP M of Definition 10.

The last theorem states that our construction creates an equivalent MDP, ac-
cording to the Definition 8. Any NMRDP can be formulated as an MDP, if enough
history is included in the state space. So, what is really interesting about this
translation is that the expanded MDP has a minimal state space. This is possible
because the current state of the automaton Ai is a sufficient information that retains
just enough history to render the rewards ri Markovian. We have:

Theorem 6. [4] If every automaton Ai (1 ≤ i ≤ m) is minimal, then the extended
MDP of Definition 10 is minimal.

To recap, in this section, we’ve shown how to train an agent on a Non-Markovian
Reward Decision Process, by applying classic RL algorithms on the equivalent MDP.
Once the relevant fluents have been selected, we need to express our goal as LDLf
conditions that are associated to a positive reward (or, maybe, conditions for negative
rewards). We will see some practical examples in the following section, where we
study how to deal with multiple representations of the same configuration of the
environment.

4.2.2 RL with LDLf restraining specifications

Multiple representations

The solution for NMRDPs that we’ve seen in the previous section is elegant and effec-
tive. However, at first sight, it may only seem applicable in very simple state spaces,
that are composed of Boolean valuations for sets of fluents (for example, at some

2There is a slight difference with the original definition in [4], which accounts for a small notation
difference in some previous definitions: R(st) is assumed to produce rt, not rt+1.
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Figure 4.3. Every world state generates both high-level and low-level configurations.

time t, we might have a state st in which: {HaveKey = True, DoorClosed = False}).
This is not true, because we must remember that the NMRDP is just a model
that we’ve defined. We’re free to adopt a new formalism, where the sequence of
observations produced by the environment is decoupled from the trace where our
formulae are interpreted on. The ideas presented here have been developed in [6].

Let’s denote with W the set of world states. This is an abstract representation of
the environment configuration that is inaccessible to the agent. Instead, it receives
observations that directly depend on these states. We can represent this sensory
input with a function fS : W → S. Frequently, S is a multidimensional space, so
the observations s ∈ S are also called features vectors, or simply features. Assuming
that these features are the state space of a Markov Decision Process, we can apply
RL on S.

We now assume that there is a second function fL : W → L, with L := 2F ,
that given a world state, assigns a truth value to all fluents in F . This creates
two representations with different roles: S is a low-level features space that can be
complex, noisy and difficult to interpret directly; L is a high-level logic representation
of the same world states. To any configuration w ∈ W corresponds a pair of the
representations s ∈ S and l ∈ L. See Figure 4.3.

This distinction is powerful: it allows us to declare temporally-extended goals
with LDLf on the set of fluents F , while the agent receives and works with a different
set of features. We now formally define a specific problem that is possible thanks to
this distinction.

Restraining Specifications

Consider a Reinforcement Learning agent on the MDP M := 〈S,A, T,R〉3. This
already defines the environment dynamics and the agent’s optimal policy. We now
want to modify the agent’s behaviour by declaring an additional temporally-extended

3The discount factor has been omitted in this section, because it doesn’t apply to the problems
we study here. So, it may be simply regarded as tunable parameter.
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Figure 4.4. Learning agent with Restraining Bolt applied. r is the classic MDP reward; r′

is the additional non-Markovian reward generated.

goal on some fluents F . The purpose is to train an agent that pursues the original
rewards, while complying with the additional specification we provided. As we
know from Section 4.1.2, the LDLf goals are just a clever way of declaring a non-
Markovian reward function. These will be summed with the original rewards, so
that the agent will try to pursue both4. We call this additional module, which
reads the current fluents’ configuration and sends the non-Markovian reward back,
as the “Restraining Bolt” [6]. This term, borrowed from Science Fiction, suggests
that with this additional construction, we’re able to modify the “natural” agent’s
behaviour. In this context, the LDLf goals {(ϕi, r′

i)mi=1} are referred to as “restraining
specifications”. The general setup is presented in Figure 4.4. Notice, in particular,
that the learning agent has access to the original observations s and rewards r, and
the additional non-Markovian rewards r′. The quantity ~q will be discussed shortly.
Let’s now formalize this problem.

Definition 11. [6] A RL problem with LDLf restraining specifications is a pair
〈M,RB〉, where: M := 〈S,A, T,R〉 represents a learning agent, and RB :=
〈L, {(ϕi, r′

i)mi=1}〉 is a Restraining Bolt formed by a set of LDLf formulae ϕi over F
with associated rewards r′

i.

We can’t simply apply a RL algorithm on the rewards ri, r′
i over the state space S,

because r′
i are non-Markovian in S. What we can do, instead, is to formulate a

NMRDP with LDLf rewards, that we already know how to solve. The complete
proof is shown in [6] and [8]. What we see here is a shorter explanation that just
highlights the main concepts.

We first observe that, in Definition 11, the MDP and the Restraining Bolt
are completely distinct; their only interaction is in the sum of the rewards they

4The agent can behave optimally with respect to this combination, but this doesn’t necessarily
mean that this is the policy we were looking for. Finding the appropriate combination of rewards is
a general issue in RL.
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produce (let’s denote with r̄i := ri + r′
i the combined reward). So, to simplify the

computation, we may keep these two problems separate, transform the restraining
specifications to their equivalent MDP and combine them later. This is possible
because, given two MDPs, Ma = 〈Sa, A, Ta, Ra〉 and Mb = 〈Sb, A, Tb, Rb〉, the
following Mab := 〈Sab, A, Tab, Rab〉, with states Sab := Sa × Sb, transition function
Tab : Sab ×A× Sab → R and rewards

Rab((sa, sb), a, (s′
a, s

′
b)) := Ra(sa, a, s′

a) +Rb(sb, a, s′
b)

is still an MDP. Note that we didn’t define Tab. This is not required, as in RL, it is
sufficient that this unknown function exists; and by the laws of probability, this is
certainly the case, because the existence of Ta and Tb is a stronger requirement.

Every Restraining Bolt RB = 〈L, {(ϕi, r′
i)mi=1}〉 defines a NMRDP with LDLf

rewards NRB := 〈L,A, TL, {(ϕi, r′
i)mi=1}〉, with states L = 2F and TL as the unknown

transition function over fluents configurations. This is a problem that we already
know how to solve. By directly applying Definition 10, we can write the extended
MDP MRB := 〈Srb, A, Trb, Rrb〉 that is equivalent to the NMRDP NRB. Notice in
particular, that the state space becomes: Srb := Q1 × · · · ×Qm × L, where each Qi

is the set of states of the i-th automaton. For brevity, we will denote elements of
Q1 × · · · ×Qm with ~q, because they are vectors of automaton states.

We can now combine the original MDP M with the one generated from the
Restraining Bolt MRB, just like we’ve done for Mab, to obtain a new unified MDP
that is defined as M′ := 〈S′, A, T ′, R′〉, where:

• S′ := Q1 × · · · ×Qm × L× S

• T ′ : S′ ×A× S′ → R with:

T ′((q1, . . . , qm, l, s), a, (q′
1, . . . , q

′
m, l

′, s′)) :=Tl,s((l, s), a, (l
′, s′)) if ∀i : δi(qi, l′) = q′

i

0 otherwise

• R′ : S′ ×A× S′ → R with:

R′((q1, . . . , qm, l, s), a, (q′
1, . . . , q

′
m, l

′, s′)) :=
∑

i : q′
i∈Fi

r′
i +R(s, a, s′)

Both Tl,s, that is the joint transition function of the symbols s and l, and the original
reward function, R, are unknown: we only observe the samples produced while
the agent plays. Instead, we have to move all automata and return the associated
rewards, because this is a dynamics we’ve defined.



38 4. Reinforcement Learning for non-Markovian rewards

To this point, we’ve reduced the original problem of Definition 11 to standard
RL on the MDP M′. However, we can move one step further. In fact, the combined
rewards r̄i do not depend on the fluents configurations li ∈ L, if both si and ~qi are
given, that is:

r̄t ⊥ l0, . . . , lt | ~qt, st for any t

This means that an optimal policy exists for M′ with the form: ρ∗ : Q1 × · · · ×
Qm × S → A. To prove it formally, we would need to show that the value of any
state (~q, l, s), defined in equation (3.2), does not depend on l. We finally get to the
following result:

Theorem 7. [6] RL with LDLf restraining specifications 〈M,RB〉, with M =
〈S,A, T,R〉 and RB = 〈L, {(ϕi, r′

i)mi=1}〉, can be reduced to RL over the MDP
M′′ := 〈Q1 × · · · × Qm × S,A, T ′′, R′′〉, and optimal policies for 〈M,RB〉 can be
learnt by learning corresponding optimal policies for M′′.

If we denote with S′′ the state space Q1 × · · · ×Qm × S, the functions T ′′ and
R′′ are partially unknown functions S′′ ×A× S′′ → R, that are defined respectively
as T ′ and R′, marginalized with respect to L. With the MDP M′′, we assumed that
at each instant t, we observe the current state (~qt, st). This is true for st, but not for
~qt. What we can do instead, is receiving an observation of the symbols lt, moving all
the automata accordingly, and collecting the resulting states ~qt. So, the new state
(~qt, st) is composed of the computed vector of automata states, and the observed
symbols st. The symbols L don’t need to be passed to the learning agent. Refer to
Figure 4.4, once again.

Example 9. Let’s extend Example 8 on page 31. An agent can control a light bulb
through a switch, but now it can only observe images of the room. Suppose we
want to reward the agent with the same condition of the previous example: the light
must have been switched on, then off, only once during the episode. To do so, we
can define a single fluent, F := {LightOn}, representing the status of the light. The
states S are the low-level symbols, which in this case are images. L, the high-level
symbols, are composed just by the valuation for LightOn, which we can compute
from S (it is true, when the light is on in the image). Now we state the following
LDLf restraining specification:

ϕ1 := 〈 (¬LightOn)∗; LightOn+; (¬LightOn)+ 〉End

where ρ+ is an abbreviation of ρ; ρ∗. The DFA that is associated to this formula
is shown in Figure 4.5. The MDP associated to this simple problem is: 〈Q ×
Ω, A, T, {(ϕ1, r

′)}〉, where the actions are A := {Toggle,NoOp}, Ω is an image, and
Q := {0, 1, 2, 3}. With this composite state space, the agent has a complete view
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0 1LightOn 2¬LightOn 3LightOn

¬LightOn LightOn ¬LightOn true

Figure 4.5. The DFA associated to the formula ϕ1, in Example 9.

about the missing steps that are needed, in order to achieve the reward; something
that it wouldn’t know just from the current image or the current value of LightOn.

Since, in this extremely simple example, we didn’t define any environment reward,
this mostly resemble a problem of RL with LDLf reward. However, the setup with
the two groups of symbols, S and F , are more precisely modelled with a RB. In this
case, LightOn is enough, but usually rewards will also depend from S.

4.2.3 Restraining Bolt for partial observations

We’ve thoroughly analyzed solutions for the non-Markovian goals of Section 4.1.2:
namely, temporally-extended goals. We’ve solved them both in isolation, and as
additional restraining specifications in preexisting MDPs. We now want to ask: is it
possible to address partial observations, which is the second source of non-Markovian
rewards, in a similar way? As we’ll now discuss, for a class of these problems, the
answer is yes. Although this may not be practical for all of them.

Partially observable stochastic environments are properly modelled with POMDPs
Mp = 〈S,A, T,R,Ω, O〉, because they are able to correctly distinguish between the
world state space S and the observations Ω that the agent receives. POMDPs are a
large class of problems with a greater complexity with respect to MDPs. As we’ve
discussed in Section 4.1.1, we can’t simply apply a RL algorithm from the visible
quantities. The classic learning method for POMDPs is to transform them to MDPs
over the belief-state for S. However, since we assume that transition and observation
functions can be unknown, we won’t be able to apply classic estimation algorithms.
In this section, we’ll show that a class of POMDPs can be learnt by performing
RL on MDPs, defined over a extended, but compact, state space. This idea is very
similar to that of the previous sections, but we’re facing a different class of problems.

In this text, we’ll only consider POMDPs whose set of states, S, is finite. These
can be represented with a factored state space, composed of assignments for a finite
set of propositions P.

Definition 12. A POMDP is a tuple Mp := 〈P, S, A, T,R,O,PO〉, where, A, T
and R are defined as in MDPs, P is a finite set of propositions, the states S = 2P

are the assignments for the variables P, and PO ⊂ P is the subset of observable
propositions. The observation space is implicitly defined as the set of assignments
for PO.
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First we state a general result for POMDPs: learning over a POMDP can be
equivalently formulated as a learning problem over a non-Markovian Decision Process.
The latter model is identical to an NMRDP, except that, in addition to rewards,
also the transition function can depend on the entire history of configurations.

Definition 13. A Non-Markovian Decision Process (NMDP) is a tuple Mn :=
〈P, A, S, T,R〉, where:

• P is a finite set of propositions.

• S = 2P is the set of assignments for the variables P.

• A is the discrete set of actions.

• T : S+×A×S → R is the transition function that maps a non-empty sequence
of states (a trace) and the current action, to the probability of the next state.

• R : S+ → R is the reward function.

So, it is possible to state the following result:

Lemma 1. [3] For every POMDP, Mp := 〈P, S, A, T,R,O,PO〉, there exists a
NMDP as Mn := 〈PO, A, 2PO , T ′, R′〉, where T ′ and R′ are defined based on T , R,
and PO, such that Mp and Mn are equivalent 5.

In every POMDP, it is possible to compute the optimal action from the entire
history of observations. The lemma above is the first step in order to reduce the
minimal informations about the past that the agent must take into consideration.
In fact, for Boolean features, we can assume some regularities on the functions T
and R, which will allows us to define a compact representation of the past trace. In
particular, we assume that all the POMDP states and rewards can be generated
from a finite state transducer (a machine that operates on regular languages in
input). Let’s formalize this model more precisely.

Definition 14. We define a Regular Decision Process (RDP) to be a NMDP
Mr := 〈P, A, S, T,R〉, with functions T and R that are generated by a finite state
transition transducer T = 〈Q, q0, δ, %, η〉, where:

• Q is the finite set of transducer states.

• q0 ∈ Q is the initial state.
5More precisely, we mean that the two models produce computation trees which are isomorphic.

However, we won’t formally define isomorphism and the computation trees of the respective models.
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• δ : Q× S → Q is the deterministic transition function of the transducer; we
extend δ to sequences in the natural manner: δ(q, 〈s1, s2〉) = δ(δ(q, s1), s2).

• % : Q× A× S → R is the transition output function of the transducer, such
that: T (〈s1, . . . , sk〉, a, s′) = %(δ(q0, 〈s1, . . . , sk〉), a, s′).

• η : Q → R is the reward output function of the transducer, such that:
R(〈s1, . . . , sk〉) = η(δ(q0, 〈s1, . . . , sk〉)).

The RDP model has been introduced in [3], where the authors have defined T and
R using formulae of LDLf . The definition we see here, doesn’t specify the formalism
in which these functions are defined, it only expresses the general properties they
need to respect: it must be possible to generate states and rewards from a finite state
transition transducer. Since LDLf exactly captures the class of regular properties
on the trace S+, this definition and the original, in [3], are completely equivalent.

RDPs are a more restricted class of models with respect to NMDPs: not all
POMDPs can be expressed as RDPs. We can more precisely state for which of those
it is possible to do so. Closely following [3], we obtain:

Theorem 8. For every POMDP, Mp := 〈P, S, A, T,R,O,PO〉, if, in all reachable
states, the value of every p ∈ P is a regular function of the past and current values
of PO (i.e. p is true if some REf is satisfied), there exists an equivalent RDP
Mr := 〈PO, A, 2PO , T ′, R′〉, for some transducer T .

We’ve shown that a class of POMDPs can be translated to equivalent RDPs.
This is important, because, as we can see from Definition 14, an RDP doesn’t
have any direct dependency from the past observations. Instead, all the necessary
informations needed to predict the next states and rewards are contained in the
transducer state Q. This allows us to forget about complete trace of observations
2PO , which may be any high-dimensional space.

The final result that we need is that RDPs can be transformed to MDPs. Very
similarly to Lemma 1 of [3], we can state the following:

Theorem 9. Let Mr be any RDP Mr := 〈P, A, S, T,R〉 and T its finite state tran-
sition transducer T = 〈Q, q0, δ, %, η〉. Then, there exists an MDP M := 〈Q,A, T ′, η〉,
that is equivalent to Mr, whose transition function is defined as T ′(q, a, q′) :=∑

s′∈S : δ(q,s′)=q′ %(q, a, s′).

We’ve now reached the desired result. By combining Theorems 8 and 9 we
obtain:
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Corollary 1. For any POMDP 〈P, S, A, T,R,O,PO〉, in which, in all reachable
states, the value of every p ∈ P is a regular function of past and current values
of PO, there exists an MDP M defined as in Theorem 9.

This corollary states when a POMDP admits an equivalent MDP with a finite
and countable set of states Q. This is a general result, but it doesn’t immediately
tells us how to define such equivalent MDP. Since, in RL, we assume the transition
and reward functions of the original model to be unknown, we can’t start from
the POMDP model to write the appropriate finite state transducer of the RDP.
Furthermore, if the set of variables P is very large, we’ll be also unable to explicitly
define the equivalent MDP, even if we had a complete knowledge of the environment.
Still, this general result states that such MDP indeed exists, for the group of
POMDPs specified.

However, in the small remainder of this section, we’d like to discuss how some of
these partially observed environments could be addressed with the Restraining Bolt.
Creating a formal connection between the two solution approaches is between the
scope of this thesis. Still, we’d like to draw some observations here.

Suppose we’re given a partially observable environment, which produces bounded
rewards r ∈ R and observations o ∈ Ω. When Ω is a complex high-dimensional space
it’s often not practical to recognize regular properties in the trace Ω+. Instead, we
introduce a new set F of atomic propositions which are computed from Ω. So, we
define F such that there exists an appropriate features extractor f : Ω→ 2F . Can
we assume that the value of every POMDP variable p ∈ P is a regular function of
F+? Usually, not. Since we won’t be able to define an exhaustive set of variables.

However, let’s suppose for a moment the our goal is to imitate the rewards
generated by the environment. To do so, we specify an MDP M = 〈Ω, A, T ′, R′〉
and a set of LDLf restraining specifications, such that the rewards generated by
this Restraining Bolt reproduce those generated by the environment. Let’s denote
with M′ the equivalent MDP associated to the Restraining bolt just defined. Since
the rewards generated satisfy the Markov property with respect to the states of M′,
we argue that the same holds for those generated by the environment. Essentially,
there could exists an appropriate set of LDLf formulae, such that the additional
components associated to the Restraining Bolt’s states, restore the Markov property
on rewards.

A Restraining Bolt is just a clever way to define a Markovian state with respect
to some LDLf rewards. It can’t be used to generate the full POMDP dynamics,
like we did with the transducer. This idea serves just to suggest some parallelisms
between the two techniques, and indicates future research directions.
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4.3 Restrained Deep RL agents

As illustrated in Section 3.2.2, the RL algorithm used in this thesis is Double DQN,
a Deep RL method. Double DQN agents contain a Q-Network, which is a function
Q : S → R|A|, that is parametrized in θ. Given a MDP state s ∈ S, this computes
the state-action value for every action a ∈ A. In this section, we will propose an
original Q-Network model that properly handles the additional inputs received from
the Restraining Bolt.

The Restraining Bolt is an interesting method because we can regard it as
a module that, added to the original setup, generates additional rewards and
observations. In principle, no structural modifications would be required in the
agent’s design: new rewards can be simply summed with the previous ones, and the
Restraining Bolt’s states ~q can be stacked with the environment’s observations to
produce a composite MDP state (ot, ~qt). Agents can learn from this new state space
without modifications6.

Deep RL agents, instead, learn approximate value functions and policies. In this
case, we should carefully select the agent’s model, a neural network, that has the
appropriate expressive power. A network that is suitable to approximate a function
Ω → R|A| is not necessarily appropriate for a function from the new state space,
Ω×Q1 × · · · ×Qm. Overfitting and underfitting are well known issues in Machine
Learning.

4.3.1 Q-Network for the Atari games

We will first illustrate the agent’s model that we use in this thesis when the Bolt is
not applied. Then, in Section 4.3.2, we’ll propose a modification of this network that
accounts for the additional states of the Restraining Bolt. The environments used in
this thesis are games from the collection “Atari 2600”. As illustrated in Section 3.2.1,
the observations produced are frames of size (210, 160), with an RGB colour depth
of 8-bit. Each game defines a different number of actions, 18 at most.

We use the same architecture as [19], which is illustrated here. Slight modifications
will be listed in the implementation part, in Section 6.2.2. First, a preprocessing
function applies a fixed transformation to each image. Every frame is converted to
a gray-scale picture, by computing the luminance value of each pixel. The image
is then resized to (84, 84), in order to reduce the input dimensionality. Finally, 4
consecutive images are combined together, producing a tensor of size (84, 84, 4) that
can be passed to the network. This last combination allows to create an observation

6Extending the size of a table, in order to account for the additional number of states, is not
considered a real modification in the agent’s design.
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that encodes how the objects in the scene are moving. The lack of this information is
one of the causes of non-Markovian rewards that can be easily solved. See Example 7,
for an explanation.

Let’s define the following abbreviation: Conv(n, s, t) represents a 2D convo-
lutional layer composed of a number of n filters of size s × s with a stride of t.
Similarly, Dense(n) represents a fully-connected layer of n units. We can now define
the network structure as:

Conv(32, 8, 4), ReLU,
Conv(64, 4, 2), ReLU,
Conv(64, 3, 1), ReLU,

Dense(512), ReLU,
Dense(|A|)

where ReLU is the rectifier linear unit applied to each element. In neural networks,
images are frequently transformed with a cascade of 2D convolutions, followed by
a number of dense layers. The authors of the original paper [19] have shown that
this network size generates a model with the appropriate expressive power for our
environments.

4.3.2 Q-Network for the Restraining Bolt

We now want to apply the method presented in Section 4.2.3 in those games in which
low performances are caused by partial observations. This means that our agent
would need to receive the original observation, which is a frame of the game, and
the vector of the Bolt’s states, ~q. We’ll now suppose that our temporally-extended
goal can be expressed with a single pair (ϕ, r′). So, the Restraining Bolt’s state is a
single scalar identifier q.

As anticipated, we cannot simply stack o and q. Even if the network architecture
would allow that, we would assign a very low relative importance to q among the
thousands of pixels of which o is composed. Most importantly, the role of q must not
be confused with pixels. All these considerations are important because every model
introduces some biases, and we want our model’s bias to capture the following basic
intuition: q is an important index that parametrizes value functions. The state q is
a parametrization over value functions because, to different automaton states, there
may correspond dramatically different value functions over inputs.

Example 10. Let’s consider again the light bulb of Example 9 and the automaton
of Figure 4.5. Suppose the initial MDP state is s0 = (o0, 0), where o0 is an image of
a dark room. In this case, the model should learn an high state-action value for the
action Toggle, and a low value for the action NoOp. Later on, at some time t, the
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agent may observe the following input: st = (o0, 2). Even though the image is the
same, the agent should assign the highest value to NoOp. A different automaton
state dramatically changes the most promising actions that will lead to the goal.

A very drastic choice would be to maintain a number of |Q| different networks,
with the same architecture but different parameters θ1, . . . , θ|Q|. At each step, given
an input (o, q) the agent may use the network θq to predict the actions values for the
input o. This strong parametrization would completely separate the value functions.
An immediate problem with this approach is space inefficiency (that would be very
evident with large Q or vectorial ~q). Most importantly, the networks associated to
states that are rarely encountered would be trained on too few input samples.

The model that we propose here is a variant of the network of the previous
section. We substitute the last fully-connected layer with one of dimension |A| × |Q|.
This means that a number of |A| · |Q| linear units is arranged as a matrix, whose first
index is an action and the second index is a Bolt’s state. So, for each automaton
state, the net will generate a different column of state-action values. The idea behind
this choice is that we can safely share the initial layers, whose main goal is to provide
an encoding of the observed input. Instead, separating the last layer provides the
greatest flexibility among other combinations7. This is an intermediate approach
between completely shared and completely separate parameters θ1, . . . , θ|Q|. For a
vectorial ~q, it can be easily extended: the last fully-connected layer would produce
tensors of shape (|A| × |Q1| × · · · × |Qm|). Since the greatest number of parameters
is shared, each combination of automaton states ~q requires a smaller number of
training samples to train on.

The resulting Q-Network for the Atari games is:

Conv(32, 8, 4), ReLU,
Conv(64, 4, 2), ReLU,
Conv(64, 3, 1), ReLU,

Dense(512), ReLU,
Dense(|A| × |Q|),

Slice(·, q)

where Slice(·, q) indicates that we select the q-th column of the input matrix. This
is the agent’s model used in this thesis. As we can see, we didn’t need to define
more than one temporal goal in our experiments.

Some other variants may exists. In fact, we should remember that the automata
states are generated from the conversion of LDLf or LTLf expressions. Since, this

7We didn’t motivate why the first layers of the original net should behave as an encoder. However,
after the modification, they will be shared and trained with different outputs. So, this role will be
encouraged.
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translation has a worst case complexity that is doubly exponential in the size of the
formula, the state space may be quite large. One possibility would be to investigate
whether is it possible to adopt the NFA states, instead of the DFA’s, producing a
state space that may be exponentially smaller (multiple columns would be active at
the same time, in this case). But these variants have not been investigated yet.
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Chapter 5

Learning to ground symbols
trough RL

In Chapter 3, we’ve presented how to apply Deep Reinforcement Learning to achieve
non-Markovian goals. We’ve seen that a construction based on temporal logics, that
we call the Restraining Bolt, is an elegant solution that transforms the original
problem to a classic MDP, by producing additional rewards and observations. We
report the general scheme here, in Figure 5.1. The two blocks at the bottom are the
additions, and part of the solution. We’ve thoroughly addressed the Restraining Bolt
in Section 4.2.2, already. In this chapter, we want to focus on the other essential
component: the features extractor.

The purpose of the features extractor is to receive an observation from the
environment and produce a Boolean valuation for some predefined propositional
symbols, that we call fluents. The problem of creating a sensible connection between
the true state of the outside world and the agent’s atomic propositions is called
grounding. This process is essential, because it ensures that any decision that is
appropriate for the agent’s abstract representation is also appropriate in the real
scenario.

World
Learning

agent

Features
extractor

Restraining
Bolt

a

r

o

l

~q

r′

Figure 5.1. In this chapter, we focus on the features extractor.



48 5. Learning to ground symbols trough RL

We assume that the set of fluents F has already been defined, and the truth
of every atomic proposition in F can be decided from a single input o. If we did
define a symbol that cannot be decided from one observation, for example a generic
“GoalReached” condition, we need to split that symbol into much simpler events,
and define GoalReached in terms of the new fluents.

Usually, the features extractor is not a really interesting component. Once, we’ve
defined a fluent p ∈ F , we could manually program a function, fp : Ω → B, that
predicts when that event occurs or that condition is verified1. This approach is
perfectly fine, when applicable. However, the environments used in Deep Reinforce-
ment Learning usually produce high-dimensional or noisy observations. As we may
imagine, it becomes really hard to manually classify such inputs in the two classes.
So, in order to apply the Restraining Bolt or any other logic-based method to Deep
RL, we must resort to some Machine Learning model that will help us deciding the
truth of our atomic propositions.

Any Deep RL agent processes the input observation with a Neural Network. A
reasonable choice would be to use a NN also as model for the features extractor. We
may use a joint network that predicts the value for every fluent defined: f : Ω→ B|F|.
The simplest way to train this model is through supervised learning, where we provide
many input-output samples. Supervised learning can generate very accurate models,
but, for every image in the training dataset, we would need to manually label the
desired outputs, i.e. the fluents that are true in that image. Unfortunately, the effort
of this manual intervention would completely dominate over the advantages of the
high-level, logic approach. If possible, we would certainly like to avoid this manual
work.

A very promising alternative is unsupervised learning. These models don’t
return predictions. Instead, they memorize patterns and features that the training
inputs have in common. These models keep two representations: the input space,
and the latent space. To any input that is presented to the model corresponds a
compact representation in the latent space. The purpose of this representation is to
distinguish the specific input among all of the training set2. Since the latent vector
is much more compact, it can be used in other computations in place of the original
input. In this case, the latent vector is called an encoding.

Unsupervised learning will be a central part of the solution proposed here.
However, it may not be the only part, because unsupervised models makes no
guarantees about the meaning of the latent representation. This means that we
cannot predict what each number in the latent vector represents. So, the proposed

1B is the set {0, 1}, which represents {false, true}.
2To emphasize this concept: the latent vector serves to identify the input sample among the

training distribution.
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model will transform the encodings through a second function, which computes the
truth value of the fluents.

To better understand the motivation behind our choices, we list few general goals
that we want to pursue with this work:

1. Learning should not require manual labelling.

2. We select the fluents that should be learnt.

3. Model should make as few environment-specific assumptions as possible.

The second principle means that we first choose the propositions to use in our
temporal formulae, then we train a model to valuate them. An opposite approach
could have been to train an extractor of Boolean features, then trying to recognize
the meaning of those fluents.

With the general goals 2 and 3 above, in particular, we express that the model
should be generalizable to a wide range of output fluents and input observations.
Of course, this is only possible to some extent. As we’ll discuss in Section 5.2
and 5.7, this method, as realized in this thesis, makes some assumptions that limit
its applicability to a specific class of fluents and observations. However, this work
poses some interesting ideas, such as temporal constraints, that certainly needs to be
further investigated in the future. This thesis is just an initial study in this direction.

5.1 Temporal constraints

In this section, we illustrate the concept of “temporal constraints”. This is an
important idea introduced with this work, that will help us pursue the three principles
above. We can start from the following observation: a dataset of labelled samples
is a description, by examples, of the desired meaning of the fluents. A good model
would interpolate between these samples to inputs that have never been observed.
Without these examples, how do we specify the desired meaning of a fluent? Note
that by “meaning”, we mean the set of inputs in which the propositional symbol
should be valuated to true.

What we propose here is to specify the desired temporal behaviour of these
fluents with temporal logics: we write a temporal formula, in LTLf or LDLf , that
describes all the possible traces of the fluents we want to define. We don’t talk
about desired trajectories. Instead, we define all the possible trajectories according
to the environment dynamics. For example, suppose that two conditions A and B,
according to their intended meaning, cannot be true at the same time. Regardless
of what we’re trying to achieve, we can write the following temporal constraint:
[ true∗ ](¬A∨¬B). This is a simple propositional property that should hold in every
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Figure 5.2. The DFA associated to the formula [ true∗;A ]〈 true∗ 〉B.
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Figure 5.3. The DFA associated to the Example 11.

instant, but there are many other interesting constraints that we may specify with
temporal logic. For example, A and 〈 true∗ 〉(Last ∧ A) respectively mean: every
episode starts/ends with an instant where A is true. Also, [ true∗;A ]〈 true∗ 〉B means
that every time A becomes true, the event B must follow later on. This is a frequent
pattern in request–response behaviours. The automaton associated to this constraint
is shown in Figure 5.2. Temporal logics like LDLf are very expressive and allows to
write many complex properties that the symbols satisfy.

Usually, we won’t be able to write complete constraints or exact definitions of the
fluents. This is not necessary, though. It is sufficient to exclude as many inconsistent
trajectories as we can, given the symbols available.

Example 11. Suppose that an agent should open a door that is closed with a key,
and we’ve defined the fluents F := {HaveKey,DoorOpen}. We need to train a feature
extractor that valuates these two propositions with their intended interpretation.
We may write the following constraint:

(¬HaveKey ∧ ¬DoorOpen) ∧ ¬〈 true∗;¬HaveKey 〉DoorOpen

which says that the door cannot be opened if, at the previous instant, we don’t have
a key. Also, initially, the door is closed and the agent has no key. The associated
automaton is shown in Figure 5.3. Note that we didn’t specify that the door should
be eventually opened. The automaton only excludes the trajectories that certainly
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input sequence

f : Ω→ B|F|

unknown
valuation function

1
1
0
1
0

output trace

π |= ψ
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ψ

LDLf formula

Figure 5.4. The trace generated by the valuation function must satisfy the temporal
constraint.

can’t happen.

The general idea is shown in Figure 5.4. We’re trying to learn the unknown
function f : Ω→ B|F|, which, from a single input observation, computes the truth
value for all fluents. The trace generated must always satisfy the temporal constraint
defined in ψ.

We’ve just described how temporal constraints work. However, there is one
important consideration to do: these constraints are very weak. This means that
there will be lots of fluents’ valuations functions that are consistent with this
specification. Consider Example 11, a feature extractor f(o) := {} completely
ignores the input and always predicts that both fluents are false. It is wrong but it’s
perfectly consistent with the specification. Similarly, many other valuation functions
that respect the DFA dynamics of Figure 5.3 will be completely meaningless. This
may not surprise us, as most constraints can only relate the valuation functions with
each other, but they cannot force arbitrary input–output associations. The initial
and final conditions (such as ¬HaveKey ∧ ¬DoorOpen in the Example 11) are some
of the few examples that creates a strong binding between input observations and
desired fluents’ output.

5.2 Assumptions

In this section, we’ll list the initial choices and assumptions taken in this work. Of
course, assumptions like these restrict the range of valuation functions that can be
learnt. However, they are essential in order to devise a solution. The purpose of
most of them is to address the issue mentioned in the previous section: temporal
constraints are only very weak indications of the desired meaning of the fluents.
Other assumptions, instead, describe the range of environments which the proposed



52 5. Learning to ground symbols trough RL

Full
Empty

PaddleLeft

Figure 5.5. Fluents and regions for the environment Breakout in Example 12.

model can be applied to.
First, we remember that the environments we’re dealing with are video games

from the Atari collection. So, the input space is composed of images of size (210, 160).
In the following, we will always use images from this games, because this is how
environment’s observations look like.

Then, we assume that each atomic proposition can be decided just from a fixed
region of the input image. In other words, to each fluent, we associate a rectangular
portion of the input and we assume that an observation of this region is sufficient
to decide the truth of the symbol. Regions can overlap and different fluents can be
defined on the same region. By restricting the input space of the model so much,
we’re partially reducing the complexity of the problem.

Example 12. In order to better understand what regions are, we anticipate one
environment that we’ll encounter in the experiments Section 7.1: Breakout. In this
famous game, the player’s goal is to direct the ball toward the bricks. Suppose we
want to learn three fluents F := {Empty,Full,PaddleLeft}, as shown in Figure 5.5.
The region associated to each of these symbols is indicated with an orange box.
PaddleLeft should be true when the paddle is inside the area on the left; Empty and
Full should be true respectively when all the bricks, or no bricks, inside the region
have been shot down.

As it may be clear from this example, the regions also help to do something
that would be impossible in logic: indicate to which portion of the input the fluents
refer. Also, we should choose each region as a small selection of the image in which
the condition we’d like to extract is visually evident: to different valuations should
correspond noticeable differences in the region. In the following sections, we’ll refine
what we mean by “noticeable”. Essentially, we mean that the model must be able to
learn an encoding that captures the properties we’re interested in. Unfortunately,
this is not something that can be described with extreme precision, in machine
learning. We’ll discuss this issue in Section 5.4.3.

Due to these fixed regions, this method is only applicable to games with a fixed
view of the scene. If every object in the image were moving, we couldn’t apply the
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simplification of static regions. Few examples of games that respect this constraint
are: Breakout, Mr. Pac-Man, Video Pinball, Pong. We’ll also experiment with
Montezuma’s Revenge, but we’ll limit to the first room.

In Section 5.7, “Limitations and improvements”, we’ll suggest few ideas about
how many of these limitations might be relaxed.

5.3 General structure of the model

In this section, we introduce the general structure of the model that we propose
in this thesis. The remaining parts of the chapter will cover all the details and
definitions.

As we already know, temporal constraints can exclude many inconsistent assign-
ments but they are only weak indications about the desired valuation functions. By
assuming regions, we’ve strongly reduced the size of the input space, hence of the
possible functions. Still, the problem is only mitigated. To address this issue, we
propose to learn each valuation function from an encoding vector that represents
the region of interest, rather than from the pixel values directly. An encoding is a
low-dimensional vector that represents a more complex input. So, we might use this
vector in place of the original input in order to simplify the learning process of the
valuation function.

An encoding can be viewed as a lossy compression of the input. The meaning
of the encoding vector depends on the specific model, which will be presented in
Section 5.4. Here, we only want to highlight that all input images that are considered
similar according to the model will correspond to the same encoding vector. Hence,
these images will produce the same interpretation for the fluents. However, this is
certainly a desirable effect: the encoder can extract few relevant indicators from
which we can compute the fluents’ values, while noises and tiny variations of the
input will be ignored.

So, the model that we propose is a function composed of two consecutive parts:
an array of encoders and an array of Boolean functions. This scheme is illustrated in
Figure 5.6. Let’s assume that the set F of fluents to learn is given, along with their
associated regions. We create an encoder for each region and a Boolean function for
each symbol in F . There might be less encoders than Boolean functions, because
multiple fluents can share the same region. This scheme has two encoders and three
Boolean functions (just like the model associated to the example in Figure 5.5). Of
course, that is just a specific instance. There will be as many parts as are needed.

To summarize:

1. The input frame is cropped around each region;
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Model

Input Encodings Predictions

Encoder
(region 1)

Encoder
(region 2)

Boolean fn 1 0 Fluent 1

Boolean fn 2 1 Fluent 2

Boolean fn 3 0 Fluent 3

Figure 5.6. The model is composed by a sequence of encoders and a set of Boolean
functions.

2. Each small image is transformed with its own encoder;

3. Each Boolean function computes the value for one fluent from the corresponding
encoding vector.

5.4 Encoding

The encoder is a Machine Learning model that is trained in an unsupervised way,
whose purpose is to convert the input of one region to the associated low-dimensional
representation. The model we’ve selected for this role is the Deep Belief Network.
As we will see, this choice is mainly motivated by the output produced by this model,
which is a vector of binary features. In the following, we’ll thoroughly describe this
model, and discuss why a binary output is so important.

Since the layers of a Deep Belief Network are a specific type of Markov Random
Field, it is better to quickly review these first. This will allow us to better understand
the goal and properties of the final encoder.

5.4.1 Markov Random Fields

In the previous chapters, we have sometimes used Directed Graphical Models (for
example in Figure 3.2 on page 18). These are probabilistic models in which directed
arcs represent known conditional probabilities between two variables. Here, instead,
we’ll adopt a different kind of formalism: Undirected Graphical Models (UGMs),
which are also called Markov Random Fields (MRFs). Most of the topics presented
in this section are a reorganization of the material in [21].

A UGM is an undirected graph, where variables are represented by nodes, as
usual, and undirected arcs connect variables which are directly dependent. A
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x1 x2

x3

x4

Figure 5.7. A small MRF where: x1 6⊥ x4, but x1 ⊥ x4 | x2.

missing edge means that two variables are conditionally independent given the
others. For example, in Figure 5.7, x1 and x4 are dependent variables, but they
become conditionally independent if x2 is observed. In this and the following graphs,
we assume that each node represents a scalar quantity. Vectorial quantities will be
indicated in bold fonts.

MRFs are very convenient when we what to express that two variables are related,
but we can’t establish any causal relation between them. Consider, for example, the
noisy pixels of an image. The values of neighbouring pixels are clearly dependent,
as they are related by the subject of the image, but we can’t establish any useful
conditional probability between the two.

In every MRF, the joint probability of all the variables can be expressed as3:

p(x | θ) ∝
∏
c∈C

ψc(xc; θc) (5.1)

where each c ∈ C is a maximal clique of the graph, and each function ψc computes
how likely is the observation of variables xc, according to the parameters θc. The
joint probability is only proportional to that quantity, because one normalizer has
been omitted. As an example, the joint probability for Figure 5.7 can be written:

p(x | θ) ∝ ψ1(x1, x2, x3; θ1)ψ2(x2, x4; θ2)

Therefore, a model for a MRF is fully defined by two factors: the structure of
the graph, and the functions ψc. While the former strongly depends on the process
to be modelled, we can present the most common choice for the latter. First, let’s
rewrite each term as:

ψc(xc; θc) := exp(−E(xc; θc)) (5.2)

for some function E. E is called the energy function. Since it is inversely correlated
to the probability, it is high for unlikely configurations of variables and low for
very probable configurations (according to the model parameters, of course). Due
to this property, the energy is sometimes a very useful indication of the final

3In this chapter, vectors are denoted with bold lower-case letters. So, the entries of a vector x
are xi. Similarly, matrices are indicated with bold upper-case letters. A matrix A has columns a:j
and entries aij .
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probability4. Usually, the energy function is of the simplest kind, a linear combination:
E(xc; θc) := −θTc φc(xc), for some basis function φc. In the following, we’ll assume
this form.

As we may recognize, in a MRF there is no output. We’re not trying to learn
an input–output function. Training a model means to find the optimal parameters
θ∗ that maximize the probability of the input samples. The trained model should
represent the probability distribution of the input data, as closely as possible. This
is clearly different from supervised learning.

Let’s denote with D a dataset of training samples, D := {x(i)}, and with l(θ)
the log-probability of the dataset according to the model, l(θ) := log p(D | θ). The
optimal parameters are those maximizing the likelihood l(θ). So, we may approach
this solution by following the positive gradient of the likelihood. The gradient of the
likelihood, with respect to each group c of parameters, is:

∂l

∂θc
= Ex′∼D

[
φc(x′)

]
− Ex

[
φc(x)

]
(5.3)

The two parts compute the expected value of same quantity according to a different
distribution of x 5. The positive term simply stands for the average value of that
quantity, computed from the samples in the training dataset; while in the right-most
term, we take an expectation on x according to the distribution induced by the
model.

We’ll end this quick review of MRFs, by discussing the role of latent variables. As
we already know from the comparison between MDPs and POMDPs, probabilistic
models that include some unobservable variables can be much more expressive than
the others. Such variables are referred to as latent variables, or simply hidden
variables. The latent variables of a model can be a very effective explanation of the
visible quantities. Just like the states of a POMDP explain the visible observations,
a latent variable representing the subject of an image is a clear motivation for the
observed pixel values. Connecting the visible units directly would be very hard
to do. Latent units in a MRF do not define such causal relations, but the added
expressiveness is the same.

We partition the units of the model as x = (v,h), where v and h denote the
visible and hidden variables, respectively. A model with latent variables can be
trained very similarly to what we’ve seen above. The only difference to equation (5.3)
is that we need to always take the expectation on h according to the model, because

4Computing the exact probability p(x | θ), as many other quantities, is intractable for generic
UGMs, because often we won’t be able to compute the normalizer.

5The function φc only receives the values of the clique c. In Equation (5.3), we write x instead
of xc, to ease the notation.
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Figure 5.8. The UGM of a Restricted Boltzmann Machine. Gray nodes are the visible
units.

they will never be observed in the dataset:

∂l

∂θc
= Ev∼D,h

[
φc(v,h)

]
− Ev,h

[
φc(v,h)

]
(5.4)

Restricted Boltzmann Machine

The specific model that we’ll use is the Restricted Boltzmann Machine (RBM). An
RBM is a MRF composed of a visible and a hidden layer. Its graph is shown in
Figure 5.8. As we can see, there are no connections between variables of the same
layer, and every clique has two nodes. So, the joint probability is simply:

p(v,h) ∝
V∏
i=1

H∏
j=1

ψij(vi, hj) (5.5)

with one function ψij for each arc (vi, hj). This simplification, along with other nice
properties, are only possible thanks to its bipartite structure. This is why it is said
“restricted”. Useful RBMs have strictly less hidden than visible units.

The classic RBM, which is the one we’ll use here, assumes that all variables are
binary: vi, hj ∈ {0, 1}. Also, it defines the following energy function6:

E(v,h; θ) := −(vTWh + vTb + hT c) (5.6)

With θ, we denote the column vector of all the parameters of the model. Namely,
the weights W and the biases b, c.

In RBMs, we can easily compute the posterior probability of a layer, given an
observation of the other. For binary RBMs, this is:

p(v | h,θ) =
V∏
i=1

Ber(vi; sigm(wi: h + bi))

p(h | v,θ) =
H∏
j=1

Ber(hj ; sigm(vT w:j + cj))
(5.7)

6Thanks to the symmetry of equation (5.5), we can combine the products of all ψij and write a
single cumulative energy in matrix notation.
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where sigm : R→ (0, 1) is the sigmoid function, sigm(x) := ex/(ex + 1), and wi:,w:j

denote the i-th row and the j-th column of W, respectively. From the previous
equations, it follows:

E[v | h,θ] = sigm(W h + b)

E[h | v,θ] = sigm(WT v + c)
(5.8)

To train a binary RBM, we apply equation (5.4) without modifications. To
obtain the basis function φ(x) we need, it’s sufficient to rewrite equation (5.6) as
E(x) = −θT φ(x). We would obtain the following training gradient7:

∇W l = Ev∼D,h
[
v hT

]
− Ev,h

[
v hT

]
∇b l = Ev∼D,h

[
v

]
− Ev,h

[
v

]
∇c l = Ev∼D,h

[
h

]
− Ev,h

[
h

] (5.9)

The last quantity we’ll discuss is the free energy. As we’ve noted, the energy of
a MRF is an useful indication about the un-likelihood of an observation. However,
latent variables do not allow an efficient computation of the energy. So, we usually
resort to a different measure, called the “free energy”, F (v) := − log

∑
h e

−E(v,h),
which, for binary RBMs, can be efficiently computed as:

F (v) = −bT v−
H∑
j=1

log
(
1 + exp(WT v + c)

)
j

(5.10)

Training algorithm

We already know how RBMs are trained: the parameters are updated according to
the gradients of equation (5.9). However, we didn’t mention how to actually compute
the expectations in those expressions. Here, we will look at a specific algorithm that
computes an approximation to those gradients. Even though some topics also apply
to different MRFs, we’ll only discuss the specific case of binary RBMs.

This is not an unusual situation. In Machine Learning, we never have access
to the optimal gradient. That is why we always apply a stochastic optimization
algorithm, such as SGD, from the samples of the training dataset. We’ll do the same
here, by approximating:

Ex∼q[v hT ] ≈ v′ h′T (5.11)

where the vector (v′T ,h′T )T is a sample obtained from the distribution q. So, the
question is: how to we obtain those samples?

Persistent Contrastive Divergence (PCD) [26] is an algorithm that allows a
7The third gradient, that of the biases c, might seem null. This is not true, as different values of

v also affect the model estimates for h.
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very efficient sampling of the variables in an RBM. The algorithm implemented
in this thesis is a small variant of PCD, that we define in Algorithm 1. This
explicit formulation has been obtained elaborating previous algorithms (Contrastive
Divergence) and the description provided by the authors [26].

Algorithm 1 Persistent Contrastive Divergence variant
Input: A training dataset D = {v(i)}
Output: Trained model {W,b, c}

1: Initialize W ∈ RV×H , wij ∼ N (0, σ)
2: Initialize b← 0, c← 0
3: Initialize vectors {v(1)

s , . . . ,v(B)
s }

4: repeat
5: Collect a batch B of size B from D
6: Reset batch gradients, gw ← 0, gb ← 0, gc ← 0
7: for each sample in batch v(i) ∈ B do
8: Sample hd ∼ p(h | v(i))
9: Compute ĥm = E[h | v(i)

s ]
10: Sample hm ∼ p(h | v(i)

s )
11: Compute v̂m = E[v | hm]
12: Sample vm ∼ p(v | hm)
13: Compute gradients

g(i)
w ← v(i) hTd − v̂m ĥTm

g(i)
b ← v(i) − v̂m

g(i)
c ← hd − ĥm

14: Accumulate gw ← gw + g(i)
w , gb ← gb + g(i)

b , gc ← gc + g(i)
c

15: Save v(i)
s ← vm

16: end for
17: Update W←W + µ

Bgw, b← b + µ
Bgb, c← c + µ

Bgc
18: until convergence

Few clarifications are needed. The gradients in equation 5.9 are composed of two
terms. The left-most expectation is said “clamped” or “data-driven”, and it’s easier
to compute. We directly approximate it as the product of two samples: v(i) hTd .
Instead, the “unclamped” term on the right is harder to compute. So, we repeatedly
sample each group of variables in turn, vm 7→ hm 7→ vm 7→ . . . , until we enter the
model “stationary distribution”8. The last pair (vm,hm) from this sequence can
be considered as a full sample from the model, p(x | θ). What PCD does is to
abbreviate this long process by saving and restoring this chain from the variables v(i)

s .
In our small variant, we compute the unclamped term from expectations, rather

than samples. This will reduce the variance of our estimates.
RBMs are frequently trained with simpler algorithms, such as CD-1. They

8This is known as “block Gibbs sampling”.
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Figure 5.9. Diagram of a Deep Belief Network.

converge faster than PCD, but they are often unable to train on very uneven
distributions (datasets with rare samples). In fact, when the expectations are
roughly approximated, the model mostly learns to directly reconstruct the input,
rather than really learning a distribution.

5.4.2 Deep Belief Networks

We’re now ready to discuss the complete model of the encoder: the Deep Belief
Networks. Thanks to our rather in-depth discussion of RBMs, they will be much
easier to present.

A Deep Belief Network (DBN) is a machine learning model composed by a stack
of RBMs. They are combined such that the hidden units of one RBM become the
visible units of the next. This arrangement is shown in Figure 5.9. Because of
this structure, we will efficiently train this model in a greedy way, one layer at the
time. Assume we have a training dataset as usual, D = {v(i)}. Initially, we train
RBM 1 from D, with our Algorithm 1. Then, before proceeding to the next layer,
we keep these parameters fixed for the rest of the process. RBM 2 is trained exactly
in the same way but from a dataset composed of samples generated from RBM 1:
1h(i) ∼ p(1h | v(i)). We repeat this process for each additional hidden layer of the
network.

The graph in Figure 5.9 does not represent a UGM as the previous figures. If
that graph would be really considered a single MRF, we would have to train the
model as a whole, with a much less efficient procedure. So, we should consider it just
a composition of RBMs. Still, it has been shown [14] that this training procedure
computes indeed an approximation to the unified model.

We can now look at the general picture of how the encoder operates. As we’ve
seen from the structure of Figure 5.6 on page 54, we define one encoder, that is one
DBN, for each region. Then, the sequence of RBMs is trained from observations of
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this portion of the input frame. We consider as encoding vector the values of the
deep-most hidden layer of the DBN. Once a DBN is fully trained, we predict the
encoding vector Dh associated to an input v through the following chain of samples:
v 7→ 1h 7→ · · · 7→ Dh.

5.4.3 What does it learn

The model of the encoder has been fully defined already. In this section, we look at
its operation from a more general perspective. We try to answer these questions:

• Why can latent variables be considered an encoding?
• Why DBN / RBM?
• What does the encoding represent?

We said that the values assumed by the hidden layer of an RBM can be considered
an encoding of the input vector. This is not obvious, because it depends on the
meaning of those units. We observe the following: training an RBM means to find a
mapping h 7→ v such that each training sample v(i) is a very probable observation,
given the hidden units associated to v(i) (the dependency is cyclic, but we focus on
the reconstruction h(i) 7→ v(i)). Thus, the hidden units allow a reconstruction of the
visible units.

So, the latent vector is an encoding, but how is it composed? In unsupervised
models, we can never answer to this question in advance. This is the strength
of these models, after all: they automatically assign a meaning to those units, as
convenient for the optimization. In binary RBMs, we can move one step further.
Since each unit is binary, we know it contains exactly one bit of information. In
other words, each of them acts as an independent feature detector that is associated
to a specific pattern of the input. They become active, assuming a value of 1, when
the input respects their constraint. So, each entry of the encoding vector indicates
the presence or the absence of some patterns that the model has learnt to recognize.

This leads us to motivate the choice of RBM and DBN rather than other types
of encoders: the RBM achieves the maximum level of decoupling in the encoding
vector. This allows to understand more easily the meaning of each encoding the
model produces (for humans). More importantly, it allows to decide the truth of our
fluents by reasoning in terms of present and absent patterns on the input vector (for
machines). We’ll talk about this last possibility in Section 5.5.

The RBM is an universal approximator: any input distribution on {0, 1}V can be
approximated arbitrarily well with an RBM with enough hidden units [17]. This is
just a theoretical result, we’re interested in approximate reconstructions, in practice.
This discussion seems to motivate just the RBM, not the DBN. However, even
though both models are universal approximators, a DBN can produce the same
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distribution as an RBM with much less parameters. In fact, there exists cases where
a two-layers DBN requires exponentially less parameters than a comparable RBM.
So, the DBN is much more efficient. So, by adding layers to a DBN we can reduce
the size of the latent vector, which is our encoding, while maintaining the same
accuracy. Because, given the same output size, a DBN can recognize much more
complex patterns.

The last topic to discuss is the appropriate size of the encoding. Initially, we
might think that the number of latent variables should depend on the size of the
input space. This is not true, instead. This number only depends on two factors:
the complexity of the input distribution, and the desired level of accuracy. The
dimensions of the encoding should be at least the log2 of the number of configurations
that we want our model to recognize and encode. Such minimal encoding might not
exists or may not be reachable during training. So, it’s always better to use a larger
number of units. This size also determines a boundary between the relevant features
and those that are treated as noise and will be ignored9.

Example 13. Consider the region of the fluents Full and Empty of Figure 5.5. The
minimum size of the encoding is the number of bricks inside that area, because we
may use each bit to detect the presence of one brick. This optimal result might not
be reachable. So, we could use slightly more units than this minimum. We know
that the units will indicate the presence of bricks, because that is the most evident
change in that region. With this meaning, the model is able to reconstruct as many
pixels as possible. This also means that, regardless of the size of the encoding, we
probably won’t be able to detect the presence of the ball, passing through the region.
The DBN focus on the most evident changes of that group of pixels.

In Machine Learning, the depth and width of the network, which is a DBN in
this case, are hyper-parameters that needs to be tuned. The considerations above
will only help to start from a reasonable model size.

A final side note. A consequence of using binary RBMs is that the continuous
intensity of each pixel needs to be converted to a binary value. In this work, we set
a threshold to transform each pixel to either black (0), or white (1). However, we
don’t consider this a real limitation for our model. We’ve selected binary RBM for
simplicity, but there also exists Gaussian-binary RBMs, which handle continuous
values for visible units, and binary for hidden units as usual.

9The size determines the number of relevant features, not which are relevant.
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5.5 Boolean functions

Each encoder transforms the pixels of one region to a vector of few binary indicators.
This sensibly reduces the complexity of the problem by extracting the relevant
quantities, but the problem is still there: how do we map inputs (now, encodings)
to truth values for the fluents? If we consider an encoding vector h ∈ BH and a
propositional symbol p ∈ F , this means to find the appropriate Boolean function
fp : BH → B, that captures the desired concept for p.

A solution, which is now viable, is to define it manually. To do so, we first need
to understand which pattern of the input each unit of the encoding represents. Let’s
denote with ei a vector of zeros except for a 1 at the i-th position. It’s possible to
discover the meaning associated to each unit by reconstructing the expected input
with E[v | h = ei]. Thanks to the separation of features, we don’t need to visualize
all the other combinations of hidden units.

5.5.1 Searching monomials

Since each element of the vector h detects a feature of the input, we may now define
the truth of a symbol p as: “p is true when the feature h1 is present and h3 is
not”. We will conveniently express such Boolean functions with with formulae of
Propositional logic: h1 ∧ ¬h3. As usual, a formula is a concise definition for the set
of inputs that satisfy it. So, by writing this expression, we’ve successfully defined
those images in which the symbol should be assigned to true (we only talk about
the set of positive inputs, because we assume it negative otherwise).

We may be quite satisfied with this solution already. Writing a propositional
formula is much easier than collecting a dataset of input-output samples for supervised
learning. Yet, in the following part of this section, we’ll investigate how we could
learn even this final valuation function.

Our goal is to find the appropriate propositional formula among the set of all
formulae over H atoms. Unfortunately, this search space is huge: there are 2H

interpretations for H propositions, among which we should choose the set of those
associated to the true fluent value. There are 22H of those sets. Since we train from
very weak temporal constraints, we’ll reduce the search space with the following
assumption: we assume that the target concept10 of the fluent can be expressed
with a conjunction of literals, which are positive or negative atoms. This type of
formula is called a monomial. Since in this formula each symbol hi can be positive,
negative or absent, there are at most 3H different monomials from H atoms. This is

10The word “concept” is used as a synonym for the desired fluent valuation, that is the set of
inputs the symbol should represent.
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a much more tractable search space.
By applying a sequence of logical equivalences, any formula of propositional logic

can be converted in Disjunctive Normal Form (DNF). A formula is in DNF if it is a
disjunction of monomials. Thanks to this property, any complex concept can be split
into a group of monomials M1, . . . ,Mm, each respecting our assumption. So, we can
define m fluents Ai whose valuation functions are Mi. Once these monomials have
been learnt, we can write (A1 ∨ · · · ∨Am) in place of the original symbol, in every
place it appears. This shows how this procedure may be generalized. However, as
we’ll see in Section 5.7 we should restrict to very simple concepts in the first place.

5.5.2 Learning Boolean rules with genetic algorithms

We’ve defined both a search space, which is the space of monomials over the entries
of the encoding vector, and an objective, that is the satisfaction of the temporal
constraints. These constraints are expressed in a single LDLf formula ψ, written
from the atoms in F . So, we formulate the learning problem as: finding a set of
functions, f := {fp | p ∈ F} with fp : BH → B, such that the trace of assignments
produced from observations of any episode satisfies the temporal constraint ψ. Each
function fp receives in input the encoding vector h ∈ BH computed from the region
where p is defined. A solution for this problem is the entire set of functions, because
consistency with ψ is a property of the group, not the single valuation function.

Clearly, we can’t verify that the constraint is satisfied for any episode. For the
moment, we assume to approximate this test by running a large number of episodes,
instead. By checking that ψ is satisfied in each of these traces, we’re able to assess
whether some f is a solution. However, satisfaction is a binary test: it doesn’t give
any indication about how to reach such solution. On the other hand, an exhaustive
search may be unfeasible, for a large H. These considerations lead us to prefer
search methods based on sampling: the idea is to repeatedly sample a candidate set
of functions from the space of monomials, then verify it against the constraint.

Even random sampling struggles in high-dimensional spaces. For this rea-
son, stochastic search algorithms assume that some heuristic function is available
fhe : X → R+. The purpose of this heuristic is to provide a very approximate ranking
over candidates, so that most samples are drawn from the most promising portions
of the candidates space X . Let’s leave aside our definition of fhe, for a moment.

Genetic Algorithms

The search algorithm we’ve selected is a Genetic Algorithm (GA). It is a local search
algorithm which repeatedly samples batches of candidates that are modifications
of the previous ones. The motivation for this choice is that, with respect to other
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local search algorithms, GAs allow to easily control both nondeterminism and
parallelization, as we will see. The idea of applying GAs to learn propositional
sentences has also been confirmed by previous works, which applied them for Concept
Learning [16]. This is, in fact, a concept learning scenario, in which the target concept
is described through temporal constraints rather than positive examples.

In the context of GAs, the batch of candidates is called a population of individuals,
and the heuristic function is called the fitness function. We’ll denote the population
with P := {(x(i))Ni=1}, for an even size N . Each individual is represented with
a sequence of fixed length, x(i) = 〈x(i)

1 , . . . , x
(i)
L 〉, composed of symbols xj called

chromosomes. A GA starts by sampling an initial population P of size N . Then, it
repeatedly follows these steps:

Fitness Compute the fitness value for each individual: vi ← fhe(x(i)), ∀x(i) ∈ P.
The probability of reproduction for individual i is defined as ri ← vi/

∑
j vj .

Reproduction Sample a new generation, P ← {(x′(i))Ni=1}, where each individual
is assigned as: x′(i) ← x(k) for k ∼ Cat(r). The categorical distribution,
Cat(r), generates an index k with probability rk. So, the fittest individuals
are more likely to reproduce.

Crossover Sample N/2 crossover points with a uniform discrete distribution:
ci ∼ U(1, L− 1). For each pair of parents (x(2i−1),x(2i)) with i = 1, . . . , N/2,
apply a crossover with probability pc. A crossover is an exchange the first ci
chromosomes between x(2i−1) and x(2i).

Mutation For every individual x(i) ∈ P and chromosome x
(i)
j ∈ x(i), apply a

mutation to x
(i)
j with probability pm. A mutation is a substitution of a

chromosome with a new one, randomly sampled.

We’ve said that GAs allow to regulate the desired amount of nondeterminism
and parallelization. For the latter, we can increase the population size N . The
additional time required by each cycle, may be strongly compensated by the minor
number of cycles required for convergence. Furthermore, modern parallel computing
libraries will show a very little overhead each additional individual.

The randomness of the search can be tuned by selecting the parameters pc and
pm, which are the crossover and mutation probabilities. High values correspond to a
mostly random search, while low values correspond to steady convergences toward
the fittest candidates. Some nondeterminism is clearly desirable in presence of very
approximated heuristics as those that we’ll define.

During initialization, we’ve asked to randomly sample a population. Since the
individuals are composed of chromosomes, it all comes to being able to sample
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bodyheader

1-rule 1 1 0 -1 (h1 ∧ ¬h2)

0-rule 0 -1 1 0 ¬(h2 ∧ ¬h3)

Figure 5.10. A 0-rule negates the output of the conjunction.

chromosomes, just like during the Mutation phase. We assume samples can be
easily sampled with an uniform distribution. Usually, this is indeed easy, because,
in many problems, the elements of the search space can be formulated as sequences
of numbers from small domains. Also, we can note that individuals do not need to
be defined with a homogeneous sequence, every chromosome position might span a
different domain.

Boolean rules

The learning algorithm is ready. We just need to formulate elements of our search
space in terms of fixed-length sequences of symbols. Since our goal is to find a set
of functions f = {fp | p ∈ F}, we need to express f with chromosomes. For the
moment, let’s focus on each fp.

We represent each function with a propositional sentence over the H Boolean
features in the encoding vector. Since we assumed that each target concept is
expressible with a monomial, a fixed-length representation is easy to define. Given
a monomial M , whose atoms are the entries of a vector h ∈ BH , we define the
associated individual as the sequence x ∈ {−1, 0, 1}H , where each chromosome xi is
1 if the atom hi appears positive in M , 0 if hi is negative, and −1 if it’s absent. For
example, the sequence 〈1,−1, 0, 1〉 represents h1 ∧ ¬h3 ∧ h4.

The assumption of monomials was introduced both to reduce the search space and
to allow this encoding of fixed length. At a negligible cost, that is by introducing an
additional chromosome, we can extend this representation to include both monomials
and negations of monomials. We call these new functions Boolean rules. We explain
them through the examples of Figure 5.10. A 1-rule simply stands for a monomial,
as before. Instead, a 0-rule produces the opposite output: it is true, if the constraint
on the input h is not satisfied. The negation of a monomial is a clause (a disjunction
of literals). So, this extension can be considered a very restricted form of disjunction.

We’re now ready to define a fixed-length encoding for the whole set of functions.
Assign any order to the fluents in F , so to indicate with fi the valuation function
for a symbol pi ∈ F . Given a set f := {fi | i = 1, . . . , |F|} with fi : BH → B, we
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1 1 0 -1 0 1 -1 0 1 0 0 -1

Fluent 1 Fluent 2 Fluent 3

Figure 5.11. The example of an individual for a problem with three fluents and an encoding
size of 3.

define the individual associated to f as the sequence x := x1x2 . . .x|F| obtained by
concatenation of the Boolean rules xi representing each function fi. This arrangement
is shown in Figure 5.11. Each entry in the vector x is a chromosome. As such,
mutations can happen at the level of single digits of the sequence. The head of any
rule (gray block) is sampled from {0, 1}, while positions in the body are sampled
from {−1, 0, 1}.

Genetic algorithms are a type of local search because they modify single chro-
mosomes. This means that how individuals are represented is important because
it influences the search. In our case, preliminary experiments have shown that the
crossover operation was detrimental to convergence, rather than helpful. This is
probably due to Boolean rules: the body of a 1-rule may be completely wrong if
joined with the header 0, and vice versa. So, we slightly modify the GA algorithm
to restrict the sampling of crossover points to indices that leave rules intact (the
brown bars of Figure 5.11). Now, crossovers can only modify candidate sets f by
exchanging entire functions fi between them.

In this discussion, every function fi assumes a domain with the same number
of dimensions H. This means that all regions are encoded to binary vectors with
H entries. This restriction is not needed by any part of the algorithm, and it may
be convenient to use the appropriate encoding size, based on the complexity of
each region. However, the implementation provided assumes a common size H, for
simplicity.

Heuristic function and nondeterminism

We conclude this presentation of the learning algorithm by discussing the heuristic
function and few other details. The heuristic function fhe : X → R+ is used by the
GA to compute the fitness values that determine the probability of survival for each
candidate, f ∈ X . The heuristic should have a global maximum in correspondence
of a solution of the problem, so to converge to the desired target. So, in our problem,
the maximum value must be returned for a candidate set f whose output always
satisfies the temporal constraint ψ. We can’t verify “always”, but we can test that
the trace produced from f satisfies ψ in a large number of episodes.

A first possibility would be to define the heuristic in the following way: over E
episodes, the value of fhe(f) is the fraction of episodes in which π(i) |= ψ, where π(i)
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is the trace produced by f from the sequence of encoded observations of episode i.
The maximum value is 1 and, for a very large E, it is assigned to a solution11.

The heuristics need to be computed at every cycle of the Genetic Algorithm.
Clearly, running many episodes each time is unfeasible. So, we’ll only test on an
much smaller number of episodes. As a consequence of the small E, the fraction of
tests passed becomes only an approximation to the true heuristic. What is really
important, however, is that on average these values will be correct. Since the
reproduction step is a stochastic update of the model, to guarantee the convergence
of the algorithm, it is sufficient that E[fhe(f)] = 1, if f is a solution. This is a
similar concept to Stochastic Gradient Descent, where each update is performed on
an approximate gradient computed from a small batch. The expected value of these
corrections still point toward the correct direction.

Since each result of the heuristic function is less accurate, we should prefer soft
updates of the model. In a GA, we can do this by producing fitness values that
are never null. For example, we might define fhe : f 7→ [0.3, 1] by linearly mapping
the output to the appropriate range12. This slightly uniforms the reproduction
probabilities. As a consequence, convergence becomes slower but the “averaging”
effect of different cycles is stronger, which allow to reach better solutions. This is
the same effect as that obtained with a low learning rate in supervised learning.

There are still two problems to address with the definition of fhe above: dis-
cretization and degenerate solutions. Let’s discuss discretization first.

An heuristic function defines a partial ordering over candidates. Higher values are
associated to better individuals. When this function assumes few discrete values, the
ordering becomes very weak and it may not be sufficient to guarantee convergence.
This is indeed the case with the definition above, in the case of few episodes E (for
one episode, it just returns 0 or 1). It’s always better to prefer continuous values,
instead. For this purpose we define a metric mc that we call “consistency”. For
a candidate f and an episode i, m(i)

c is defined as the fraction of time instants in
which the automaton Aψ associated to ψ is on a final state. We may now define the
heuristic as:

fhe(f) := 1
E

E∑
i=1

m(i)
c (5.12)

This creates a really dense, even though rather arbitrary, ordering among functions.
What is important, however, is that the maximum of this function is still associated
to a solution. For generic constraints, the answer is no. However, this is the case if

11A solution is one that respects the temporal constraint. This do not necessarily mean that the
valuations represent the desired concepts.

12The global scale factor is irrelevant; only the proportion between the outputs contributes to
probabilities.
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we restrict to safety properties. A safety constraint is any formula that expresses
that “something bad never happens”: ψ = [ true∗ ]¬ψ′. If the temporal constraint is
a safety property, and the trace of valuations satisfies ψ, then the automaton Aψ
never reaches a non-final state, and mc = 1. Actually, we can write any prefix-closed
property, which is a slightly larger class of properties than safety. Initial conditions
are allowed, for example. A formula ψ is prefix-closed if the corresponding minimal
automaton Aψ has a single non-final state which is a sink.

The second issue to tackle are degenerate solutions. Even without the restriction
above, safety properties often arise when talking about constraints and illegal
trajectories. Since these are prefix-closed properties, valuation functions that don’t
predict any change of the fluent at all always respect the constraint. We’ll illustrate
this with an example.

Example 14. Let’s consider Example 11 on page 51. The associated automaton
is shown in Figure 5.3. Since the only rejecting state is a sink, the temporal
constraint ψ is a prefix-closed property. As we’ve already pointed out, a set of
valuation functions f(h) := {}, which predicts that both fluents are always false,
satisfies ψ. The constraint excludes illegal trajectories but doesn’t say that something
should eventually happen (the agent might think that the door is always closed, so
to avoid mistakes).

Constraints intentionally do not force specific trajectories, in fact. Because
the agent might not be able to achieve the task yet. So, to address this issue,
we define a second metric, the “sensitivity” ms. We define m(i)

s as the fraction of
visited final states of the minimal automaton Aψ during episode i. As the name
suggests, this metric is an incentive to be sensitive to input changes, and reflect
those variations to the output. Clearly, we’re not guaranteed that the transitions
of Aψ will be traversed in response to meaningful changes of the input, but we
argue that from a restricted input space and the appropriate constraint, suboptimal
valuations functions may not be able to explore the whole graph without never
reaching a rejecting state. Consistency and sensitivity work in opposition: the latter
is an incentive for exploration, while the former is a restriction. The only restriction
due to the sensitivity metric is that we shouldn’t try to learn fluents which remain
constant, for example because it cannot influence them, even by change. Because
the valuation functions have incentives to induce a change in all of them.

The final definition of the heuristic function is:

fhe(f) := 1
E

E∑
i=1

m(i)
c · max

i=1,...,E
m(i)
s + const (5.13)

where const is a minimum constant value that allows a minimum probability of
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reproduction. Consistency is not averaged but maximized, because its purpose is
just to exclude degenerate solutions: we only want to observe a change in at least
one of the E episode. This is not the true goal to achieve, which is indicated by
consistency.

So, the algorithm proceeds as follows. Initially, E is set to a low number, as
required by the speed of the machine. We’ll start to observe that the distribution
of heuristic values for each individual slowly drift toward the maximum. At the
latest stages of the algorithm, we increase the number E of episodes, so that tiny
corrections can be applied to refine the solution. At convergence, we select as best
individual the set of functions that achieve 100% of consistency with the highest
sensitivity. This is taken as final solution f∗.

In order to validate the solution extracted, we analyze whether each function
fp ∈ f∗ represents the desired concept for p ∈ F . To do so, we define the set
of encoding vectors in which the fluent is true: H := {h | h |= fp}13. Then, we
reconstruct the input images by computing their approximate expectation with n

samples:

E[v | h |= fp] '
1
n

n∑
i=1

v(i) with v(i) ∼ p(v | h(i))
and h(i) ∼ U(H)

(5.14)

U(H) represent the uniform distribution over the elements of H.
We won’t discuss the remaining parameters of the algorithm: the mutation prob-

ability pm, the crossover probability pc, and the population size. The requirements
on these are not really strict, and we can consider them as hyper-parameters simple
to tune. For a detailed discussion about their effect in GAs, the reader should refer
to [12].

5.6 Training and incremental learning

The model has been described completely already. We can now take a broader
view on the various steps of learning, going from an inexpert agent to a complete
restrained Deep RL agent with learnt features. Thus, combining every technique
we’ve discussed until now. The general steps of the learning procedures are shown in
Figure 5.12. Although “agent” in its general meaning refers to the complete artificial
entity interacting with the environment, for the moment, we’ll use it to indicate just
the decision maker, so to discuss the features extractor separately.

13We’re using the notation with some flexibility here. By ignoring the specific representations, we
can consider h as an interpretation for the propositional symbols hi that appear in fp.
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1 2 3 4

train
the agent

train the
RB features extractor

train the
restrained agent

expert play

Figure 5.12. The general steps of the training procedure.
.

1 – Train the agent

The first step is to train an agent with Deep RL. The environment is one of the
Atari games, the training algorithm is Double DQN [28], described in Section 3.2.2,
and the agent model is the Deep Q-Network defined in Section 4.3.1.

During this phase, the agent only receives observations and rewards generated
from the environment. The outcome of this training is an agent that, with some
success, tries to maximize the environment rewards. As we’ve discussed in the
previous chapter, the agent’s performances may be really low in presence of partial
observations and, in some environments, the agent may not learn anything at all (this
is the case of the game Montezuma’s Revenge, for example). These low performances
are equally fine, as we don’t need specific capabilities to proceed to the next step.

2 – Train the RB features extractor

Either if the agent should achieve some temporally-extended goal (Section 4.1.2) or
should improve its performances on partial observations (Section 4.1.1), we’ll apply
the Restraining Bolt. First, we need to select a set of fluents F that are useful in
the definition of some LTLf/LDLf temporal specification.

In the definition of F , we must restrict to symbols that respect the assumptions
listed in this chapter. In fact, their intended valuation function must be learnable
by the complete model we’ve described here. One of the assumptions, for example,
is that the truth of each of these propositions should change, at least sometimes.
This means that we cannot learn symbols that the agent obtained from step 1 is not
able to influence at all, even by chance (consider for example a symbol AgentAtEnd,
where End is a position in a maze, that the agent is unable to reach, yet).

Now that the fluents have been selected, we can train the complete model of the
RB feature extractor that we developed in this Chapter. This is done incrementally:
we train all the encoders first, then the Boolean functions.
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Figure 5.13. Training step 2 – the encoder.

Every symbol p ∈ F has an associated region from which it is valuated. For
each of these regions, we train an encoder as shown in Figure 5.13. On the left,
the agent obtained from the previous phase continuously interacts (plays) with the
environment. The agent is not trained here, its only purpose is to produce the
stream of observations ot. These observations are cropped to the region of each
encoder and collected in a dataset. This is then used as training set for the Deep
Belief Network. For efficiency, we don’t need to store every observation. Instead,
the dataset contains just the most recent n samples, for a n large enough. Then, at
each training step, we sample a random batch {v(i)} from it.

The role of the agent is not to achieve high rewards. Instead, it should explore
the environment states as thoroughly as possible. In fact, to train a good encoder we
need varied observations, because every image received for prediction should have a
meaningful encoding vector assigned. For this reason, it’s always better to prefer
exploration policies during training, because they usually include a good amount of
stochastic actions. We use a combination of classic and custom exploration policies
from Section 3.1.3.

Once we’ve trained all the encoders, we can move on to the Boolean functions.
As we know, they are learnt with a Genetic Algorithm which learns all the valuation
functions at the same time. We take as result of this training the set f∗ that is
fully consistent with the specification, with the highest “sensitivity” metric. The
main difference with the training shown in Figure 5.13 is that the heuristic function
computes the metrics on episodes, not single observations. So, instead of collecting
an unordered dataset of images, now we need to receive the exact sequence produced.
Also in this case, exploration policies are needed to observe as many different
behaviours as possible.
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3 – Train the restrained agent

Step 2 produces a trained features extractor, able to valuate all fluents that we use
in the temporal specification. It predicts the Boolean value that they assume in each
observation.

The next step is to train a “restrained” agent, that is an agent with the Restraining
Bolt applied. We use the Double DQN algorithm, just like in step 1. However, the
Q-Network we use here has been defined in Section 4.3.2, which is slightly different.
The general setup of a restrained agent has been shown in Figure 4.4 on page 36.
At the end of this step, we obtain a Deep RL agent that achieves the goal induced
by the rewards generated by environment and the Restraining Bolt. Its actions are
decided from observations (ot, ~qt).

4 – Expert play

If, with the fluents available, we’ve been able to write a temporal specification that
guides the agent to the final goal, the process should be now complete. The agent
obtained at the previous step is an expert player, able to achieve the temporal
specification.

However, it is possible that we don’t have a satisfactory set of fluents available,
especially if the agent’s performances from step 1 were poor. In this case, it’s possible
to train an agent for a partial goal. For example, in an exploration game, we might
train the agent just to leave the first room of a labyrinth because we can’t say
anything about parts of the environment that have never been reached.

A possibility is to proceed iteratively. We can use the agent obtained from the
previous step to train a new feature extractor for a more complete set of fluents.
As shown by the dashed arrow in Figure 5.12, we can continue from step 2, and
repeat as needed. Every time, the agent will be more capable, allowing to observe
new regions of the state space.

5.7 Limitations and improvements

In this whole chapter, we’ve proposed an innovative way to train an extractor of
Boolean features whose meaning is assigned by the designer. The approach has some
interesting properties, such as defining the desired valuations with temporal logics,
and avoiding the manual work required by labelled datasets. However, this thesis is
a first study in about this possibility. Due to the simplifications and assumptions
we’ve taken in this work, we’ll be able to apply these ideas just to a specific class
of fluents and observations. The purpose of this section is to review many of these
limitations and to suggest how to overcome them.
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Fixed regions

The first limitation is the assumption that the truth of each fluent can be decided
from a fixed portion of the input image. This implicitly assumes that the relevant
region of the input is always in the same position. This is only applicable to
environment with observations of the scene that don’t move. In very simple games,
such as Pong, Breakout, Mr.Pac Man this is the case, but in other games this may
not be the case.

Regions are a reasonable simplification; their fixed position may be not. Instead
of defining regions by their position, we may find the relevant location based on
some other informations. For example, we could associate visual feature to each
region. By applying object detection techniques, when that feature is found inside
the image, the portion of pixels surrounding it is selected as input for the encoding.

Weak constraints

Many assumptions and heuristics aim at solving a fundamental issue with temporal
constraints: they are very weak descriptions of the desired concepts. As we’ve
already observed in Section 5.1, there may exist many sets of functions which are
related by the same temporal behaviour but don’t represent the desired meanings
of the fluents. This is due to the weak input–output association these constraints
create. We can imagine two possible ways to create a stronger grounding of the
symbols to the intended meanings.

The first is an hybrid approach. We collect a small set of diverse input images,
and we manually label them with the desired truth value for all fluents. This creates
a dataset for supervised learning, DF = {(o(i), v(i))} with v(i) ∈ 2F . Encoders are
trained in an unsupervised way, as usual. Instead, the Boolean functions can be
trained from a conjunction of both the temporal constraints and prediction error on
this dataset. They may be combined into a single heuristic function, for example.
We argue that even few labelled samples can be a huge hint about some important
associations. Also, thanks to temporal constraints, this dataset can be really small,
which would be impossible with supervised learning.

A second possibility is the following. Suppose that the meaning of some fluents
is already known and don’t need to be leant. These constitute are set of grounded
symbols. By relating the fluents to learn with those already grounded, we can write
much more meaningful temporal constraints. Grounded symbols may arise from
conditions that are easy to detect, or maybe because we have some ad-hoc sensor or
trained model already available. Other grounded fluents are those that the agent
knows as facts. For example, we could define the set of symbols aj which are valuated
true if the agent has just performed action j. This may allow to encode in temporal
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constraints how the environment evolves as a consequence of actions.
A final issue with temporal constraints is that, because of the consistency metric,

we had to limit ourselves to prefix-closed properties. This class of temporal properties
may be enough in most cases, but if we want to exploit the full expressiveness of the
logic, we should abandon the consistency metric. With some additional hints, such
as those discussed here, we may use only satisfaction as criterion, instead of some
other heuristic.

Guarantees of learnable fluents

It is perfectly normal that Machine Learning models give little convergence guarantees.
Provided that the architecture is expressive enough, convergence depends on many
other factors, such as initialization, learner biases, training input. Just like the
results of supervised learning depend on the dataset, the features extractor we learn
depends on the observation it has received for training from the player. Fortunately,
thanks to the compression operated by the encoder, it’s really easy to visualize the
result of training, either by predicting the fluents on test data, or by visualizing the
input pattern that the function detects (see Equation 5.14).

Instead, a more serious uncertainty comes from the fact that the target concept
may not be representable with a Boolean rule over the entries of the encoding vector.
If we knew that some symbol cannot be expressed with a monomial, we could simply
divide it into simpler fluents. Unfortunately, we don’t know if that is the case. The
encoder is an unsupervised model that is free to assign any meaning to the units of
the latent vector. We can’t know in advance whether the set of encoding vectors
we’re interested in is representable with a monomial. Fortunately, when the intended
meaning of a fluent is to to detect a single input image (regardless of some small
noise filtered by the encoder), there is just one encoding vector associated, which is
certainly expressible as a conjunction of terms.
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Chapter 6

Tool for learning symbols
through RL: the AtariEyes
package

This chapter describes the software realized in this thesis, that we called “AtariEyes”.
Its purpose is both to implement the ideas that have been presented until now and
to generate the experiments shown in Chapter 7.

Apart from being a realization of the ideas proposed, this software has some
interesting qualities:

Clarity Every method and structure has been documented.

Efficiency Thanks to an heavy use of parallel computing libraries, it benefits from
GPU acceleration.

User friendly The extensive command line interface allows to experiment with
the package as it is, or, thanks to its modular design, individual structures
can be reused in future developments.

Regarding its general functionality, through the commands provided, the user
can:

• Choose any environment from the Atari 2600 collection.

• Train a Deep Reinforcement Learning agent. The algorithm is Double DQN
and the agent’s model can be either the original Atari model (Section 4.3.1) or
the restricted agent (Section 4.3.2).

• Train the feature extractor, because it implements every model and algorithm
presented in Chapter 5.
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• Play, visualize and record any of these agents while they interact with the
environment.

This chapter is divided in two sections: Section 6.1 documents how the software
can be used from a user perspective; while Section 6.2 explains some of the most
interesting details about the implementation.

6.1 How to use the software

6.1.1 Tools and setup

The software atarieyes is a Python package. It is publicly available at the GitHub
repository: cipollone/atarieyes. It can be installed with the pip command as any
other Python package, we just need to point to this git repository. The installation
command is:

pip install git+https://github.com/cipollone/atarieyes

This command installs this package from the master branch. If we need to work on
some specific revision, for example on the develop branch, we can append @develop
or any other commit to the previous address.

Dependencies are automatically installed by pip. In Python, however, it is
common to run applications inside virtual environments. Just run this installation
command within a container, to avoid dependency conflicts with other applications.
One rather particular dependency is TensorFlow, which is a famous Machine Learning
library that we use for parallel computing. Following the instructions of the specific
container application, we can reuse some preexisting system installation, if we need.
Currently, the supported TensorFlow version is only 2.1, but future 2.x versions
might also be compatible.

The package is written in Python 3 and the minimum version required for the
interpreter is 3.7. This requirement should be met by most modern operating systems.
If that’s not the case, we suggest to use pyenv, which allows environment-specific
Python installations.

Once installed, we can use the atarieyes package. As we will see, we often use
this module through its command line interface. However, if we want just to include
some structures and algorithms in other applications, we can import atarieyes.
For development, it may be also useful to look at the source code. We can clone the
repository:

git clone https://github.com/cipollone/atarieyes.git

https://github.com/cipollone/atarieyes
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This is also useful if, for any reason, some updated dependency is no longer compatible
with this package. What we can do is to cd to this cloned directory, then run
poetry install. Poetry is the container application that we use. This command
will install the exact dependency versions that have been tested during development
and are guaranteed to work.

6.1.2 Execution

To run this package as a script we run the following command from the same
environment where we’ve installed it:

python3 -m atarieyes

The reader can assume that any atarieyes command that we’ll see, is executed
through python3 -m.

Getting help

The package provides a compete command line interface, with many options that
control the training process. In these sections, we look at the most important
commands. For any doubt, or to list the arguments not discussed, we can use the
--help option, abbreviated as -h. When added, it prints the arguments that are
supported by any command. For example, running atarieyes -h produces the
following message1:

usage: __main__.py [-h] [--list] [--from FROM] {agent,features} ...

Feature extraction and RL on Atari Games

positional arguments:
{agent,features} Choose group
agent Reinforcement Learning agent
features Features extraction

optional arguments:
-h, --help show this help message and exit
--list List all environments, then exit
--from FROM Load arguments from file
1We use the argparse library for parsing and generating these messages. The file __main__.py

file also acts as reference for these commands.
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The --list option prints the unique identifier of every Atari game. To use any
of these games as environments, we pass its name to the --env/-e option, where
appropriate.

The --from option allows to execute the commands and options stored some
JSON file. The JSON must be a dictionary of parameter names and values. After any
“train” command, an args.json is automatically saved. The purpose of this option
is allowing to repeat, resume or slightly modify a command that was previously
used.

All commands are divided in two groups. Those starting with agent regard the
RL agent, while the features commands are related to the features extractor.

Agents

Three operations can be performed for the agent: train, play, and watch.
To train an agent we run:

atarieyes agent train # ...

This command has many options, some of which control the parameters of the
Double DQN algorithm. We show here just the most relevant:

-e/--env Selects the environment to use, among the list of Atari games.

-b/--batch Each update of the Q-Network is computed from a cumulative gradient
of this number of samples.

-r/--rate Chooses the learning rate associated to each gradient update.

-g/--gamma Selects a discount factor.

-c/--continue Resumes training from any checkpoint. Checkpoints are saved
in regular intervals, according to the --save option, or when a training is
interrupted with CTRL-C (SIGINT).

--rb Trains an agent with the Restraining Bolt applied. When this option is
absent, the agent Q-Network is that of Section 4.3.1. When --rb is added, the
restrained model from Section 4.3.2 is used. The argument of this command is
the IP of a running Restraining Bolt; often, just localhost.

There are many other options which we didn’t list here.
The second command related to agents is play. Its purpose is to load an agent

previously trained and let it interact with the environment. This is certainly useful
to assess the performances reached. Most importantly, this continuous play generates
the stream of observations that we need in order to train a features extractor. Some
options are:



6.1 How to use the software 81

args_file This mandatory argument is the path of the JSON file containing the
exact training command of the agent.

-c/--continue It is a mandatory argument that says which checkpoint to load.

--rand-eps and --explore-policy These two options allow to use the two custom
exploration policies that were defined in Section 3.1.3.

-w/--watch Used to visualize the frames of the game. Allowed arguments are
render, to watch the images on screen while the agent plays, or stream to
send them to another running instance. The receiver could be another instance
training the features extractor model.

--record To save a video of the agent’s performance.

Features

Commands that start with atarieyes features are related to the features extractor.
We can train the model that was developed in Chapter 5 and use it for prediction in
combination with a Restraining Bolt.

The first step is to define a set of fluents to learn, and their associated regions.
The select command allows to easily select the regions for an environment. For
example, to define regions in the Pong game, we run:

atarieyes features select -e Pong-v4

where Pong-v4 is the precise name of the environment. After this command, a frame
of the game is shown. With the mouse we can do one or more selections (press Enter
to accept). The first selection is the portion of the image where the agent should
be trained (allowing to cut irrelevant parts). Then, every following selection is a
definition of a new region. After each selection, we insert at the terminal an unique
name and abbreviation for that region.

The output generated is a JSON file containing our definitions that we can now
modify and integrate. We could have written this file manually, but select is a
convenient way to start. The file is saved at definitions/<env-name>.json. Now
we can fill all the "fluents" fields with the list of symbols that we want to define
in each region. In our example on the Pong environment, the output is shown in
Listing 6.1 which contain each region name, abbreviation, coordinates, and fluents
defined.

The other two empty fields are "constraints" and "restraining_bolt". Here
we write the LDLf formulae for the temporal constraints (Section 5.1) and for the
Restraining Bolt temporal specification (Section 4.2.2), respectively. The atomic
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{
"_frame": [ 0, 33, 160, 195 ],
"regions": {
"paddle_right": {
"abbrev": "pr",
"region": [ 131, 34, 151, 196 ],
"fluents": []

},
"bottom": {
"abbrev": "bot",
"region": [ 0, 184, 160, 194 ],
"fluents": []

}
},
"constraints": [],
"restraining_bolt": []

}

Listing 6.1. Example for the Pong game; file definitions/Pong-v4.json

symbols of both formulae must be among the fluents we’ve defined above. In
this file, they are stored as lists of formulae, just to improve readability. The
expressions each list will be joined through conjunction in a single LDLf formula.
Since the constraints are always satisfied, we consider as restraining specification
the conjunction of both of these formulae.

After the definitions, we’re ready to train the valuation functions. This is achieved
by the atarieyes features train, much like we’ve done for the agent. Few of the
many options of this command are:

--stream Sets the IP address of a running instance of agent play --watch stream
(default is localhost). The frames received are used to train this model.

--shuffle Sets the size of the dataset composed by the most recent observations.

-c/--continue Resumes an interrupted training from a checkpoint.

-i/--init Starts a new training but initializes the parameters from a checkpoint.

--train The two arguments that follow are the name and the depth of the layer
that should be trained by this command. The other parameters of the model
are not modified.

--network Specifies the structure of the encoders. The argument of this command
is a list of natural numbers. The i-th number indicates of how many hidden
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units composed the i + 1-th layer of each DBN. Instead, the first layer has
always as many visible units as the number of pixels of each region.

The features extractor that we’ve defined in Chapter 5 is composed by one DBN for
each region (the encoders) and the Boolean functions, shared by all regions. The
encoders, in turn, contain a stack of RBMs, which are organized in layers. For each
region, we need to train the shallow layers first. For example as:

atarieyes features train -e Pong-v4 --network 20 3 --train bottom 0

Then, we proceed to the next layer just below (in this example, bottom 1 is the
next and last layer of this encoder). After each encoder is trained, we can proceed
to train the Boolean functions with --train all -1. Each time we proceed to a
different part of the model, we should initialize the parameters from the previous
result via the --init option.

Many other options, which we didn’t list here, allow to personalize both Persistent
CD and the Genetic Algorithm. For example, we can tune how many episodes are
executed when computing the fitness function.

Once every part of the features extractor is trained, we can use it to make
predictions. In particular, we pass the predicted fluents values to the Restraining
Bolt. With the command features rb we can execute a RB from the features
extractor just trained. Some arguments are:

args_file Mandatory path of the JSON file of arguments that generated the
features extractor.

-i/--init Model checkpoint to load.

--stream IP address of the running agent to which this Restraining Bolt should be
applied.

Instances

As we can understand from the arguments of the various commands, often we need
to run more than one instance at the time. Figure 6.1 shows how the instances
interact in each situation.

These instances use sockets to exchange observations, states and rewards. The
reason for this complete separation is that the main purpose of the atarieyes
package is to implement the Restraining Bolt and the features extractor of Chapter 5,
not a RL agent. In fact, there are many modern and stable libraries implementing
Deep RL agents. Thanks to this separation, we can substitute atarieyes agent
commands with any software implementing a Deep RL agent. We don’t need to
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atarieyes agent play <agent-file> --watch stream

atarieyes features train --env <env-name>

ot

(a) Training a features extractor.

atarieyes features rb <features-file> --stream

atarieyes agent train --env <env-name> --rb

ot (~qt, r′
t)

(b) Training a restrained agent.

atarieyes features rb <features-file> --stream

atarieyes agent play <agent-file> --rb --watch stream

atarieyes features train --env <env-name>

ot (~qt, r′
t)

ot

(c) Training a new features extractor from a restrained agent.

Figure 6.1. How the various instances interact in each case.
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restrict ourselves to our implementation, not even to Double DQN. In fact, it’s
sufficient that the agent’s instance respects the interface of the socket messages.
Since we also provide Client–Server classes, the integration should be immediate.

Output

To conclude this overview of the user interface, we look at the output of the various
commands. As we’ve seen from select, the definitions for each environment are
stored in JSON files inside the definitions/ directory. Training commands, instead,
store their result inside runs/. For example, atarieyes agent train -e Pong-v4
generates the following directories:

runs/agent/Pong-v4/logs/0/
runs/agent/Pong-v4/models/0/

Every training generates “logs” and “models” directories in unique paths composed
with increasing numbers. After the example above, a new output would be saved at
logs/1 and models/1.

Inside the “models” directory we can find all the checkpoints saved during
training. These files can be passed as arguments to a --continue option, to load a
saved agent. “logs” directory, instead, contains args.json and a file of TensorBoard
logs. The JSON of arguments args.json is used for the play command or for the
--from option, if we want to repeat a similar training.

The remaining files in the logs directory contain various metrics that allow to
follow the training process. These logs can be visualized with TensorBoard, the
TensorFlow visualization tool. In the example, we would run:

poetry run tensorboard --logdir runs/agent/Pong-v4/logs/

For each episode, we could read in TensorFlow: the number of steps, the cumulative
reward, the distribution of RB states, the distribution of selected actions, and metrics
related to DQN.

The output of a features train command is really similar to that for the
agent: “logs” and “models” directories are saved under runs/features that contain
the JSON of arguments, checkpoint files, and TensorBoard logs. Intead, the main
difference is the content of the log files. Some informations that we save and can be
visualized are the following:

Scalar metrics These are relevant scalar quantities that allow to follow the training
algorithm. For RBM training, we store: free energy, reconstruction error,
sparsity and normalization loss. Instead, for the Boolean functions, we can
read: average and maximum values of the sensitivity, consistency metrics, and
fitness.
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Images Reconstructed most probable input images.

Graph We can inspect the graph of computations for each training command.
Each inner model of the features extractor has a different training graph. For
the Boolean functions, for example, we observe the four steps of the genetic
algorithm.

Distributions We can observe how the model parameters are distributed on the
real axis. This helps to investigate under/over-fitting and other issues. For
the genetic algorithm, we visualize the population fitness values, a projected
representation of the individuals, and the fluents predictions.

LDLf library: flloat

Temporal logic is used for two purposes: the RB restraining specification, which
indicates the agent’s behaviour to reward, and the temporal constraint, used to learn
the valuation functions. They are LDLf formulae, written inside each environment
JSON file of definitions.

The library that we use for parsing and transforming these formulae to DFA
is called flloat (GitHub whitemech/flloat). The purpose of the package is to
implement the DFA transformation for two temporal logics: LTLf and LDLf . In
fact, we might alternatively use LTLf with minor modifications to the source.

The initial author of this library, Favorito [8], started this project as a Python
port of an homonymous software that was developed in Java2. Then, development
has continued and, during this thesis work, we contributed to the advancements of
the library. We helped to improve the overall stability of the software and to write a
more efficient parsing of the input languages (the version used here is 0.3.0).

The fields constraints and restraining_bolt both contain LDLf expressions
in a string format accepted by flloat. We can refer to this library documentation
to understand what format is accepted. Since flloat gets installed with atarieyes,
we can also experiment interactively with it. For example:

from flloat.parser.ldlf import LDLfParser as Parser

expression = "A & [true*; A]B & <true*; ?B>tt"
formula = Parser()(expression)
automa = formula.to_automaton()

This is useful to check that the expression has the correct syntax, and that it
represents the intended temporal property (it’s possible to visualize the automaton

2GitHub RiccardoDeMasellis/FLLOAT.

https://github.com/whitemech/flloat
https://github.com/RiccardoDeMasellis/FLLOAT
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automa with Graphviz). In this example, expression is correctly parsed as:

A ∧ [ true∗;A ]B ∧ 〈 true∗;B? 〉tt

6.2 Implementation

The package has a modular and comprehensible design, as we can see from the
following file structure:

atarieyes/
__main__

tools

streaming

layers

automata

atarieyes/

agent/
training

playing

models

atarieyes/

features/
training

rb

models

genetic

temporal

selector

Each of these files is an importable Python module (extension omitted), with a
separate functionality. We won’t discuss all of them, as we only want to look at the
most interesting details of the software.

6.2.1 atarieyes package

There are 5 modules inside the outer scope (left column of the file hierarchy above).
__main__.py only realizes the command line interface and tools.py contains generic
utilities. Instead, the remaining modules are the most interesting.

streaming module

This module allows the various instances of the program to communicate. It defines a
communication protocol and the format of the messages to exchange. The instances
communicate through sockets. So, the RL agent and the Restraining Bolt could
even be on separate machines. Furthermore, this allows our implementation of
the features extractor and the Restraining Bolt to communicate with any kind
of RL agent, even implemented with some other library. It’s sufficient that the
agent program does import atarieyes.streaming to use this module interface for
exchanging messages with the Restraining Bolt.

This file defines two base classes: Sender and Receiver. The sender is a TCP
server that waits for an incoming connection from the receiver. They only realize the
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basic functionality, because the specific messages format is defined in their subclasses.
AtariFramesSender and AtariFramesReceiver is a pair of subclasses that are

used to send images of the Atari games when the --stream option is present.
Similarly, StateRewardSender and StateRewardReceiver transmit the pair (~q, r′)
containing an automaton state and a reward, from the RB back to the agent.

Users can send and receive data with send and receive methods of the respective
instances in each pair. The base classes also provide transmit and receive buffers for
an asynchronous exchange.

automata module

This module only contains one class that realizes a DFA. There are many automata
libraries available. The motivation behind this class is that we need to be very
efficient in our specific use case: running many copies of the same automaton. In
the following, let’s denote with Aψ the DFA associated to the temporal constraint.

The final layer of the features extractor model is composed by an array of
Boolean functions. As we’ve seen, this part is trained with a Genetic Algorithm,
which maintains a population of candidates (each individual is an array of functions).
Computing the fitness function for each individual requires to do predictions with
all of them and check the generated traces against the temporal constraint. To do
so, we continuously predict the fluents values with each candidate, and we move
each copy of Aψ accordingly. At the end of the episodes we combine the metrics
to compute the total fitness function for each candidate. Since the population can
contain thousands of candidates, it’s important to have an implementation that
allows an efficient execution of thousands of parallel copies of the same DFA.

The class TfSymbolicAutomaton stores the edges of the graph into a Hash table.
Each key is a pair containing the current state and the input symbol; each value
is the next state for that key. Moving through the automaton is a simple lookup
from this table. To realize both the table and the lookup mechanism we’ve used the
vectorial calculus of the TensorFlow library. So, with just one call, it’s possible to
receive the next states for any number of state–symbol input pairs.

The methods are:

def initial_states(self, n_instances): # ...

def is_final(self, states): # ...

def successors(self, states, symbols):
# Lookup
keys = self._to_keys(states, symbols)
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next_states = self.transitions.lookup(keys)

return next_states

The automaton instance is state-less. The caller should maintain a vector of states,
created from initial_states and transform it each time with successors.

The symbols argument is a vector of predictions, one for each candidate. The
symbols alphabet is the set of Boolean interpretations of the fluents. This means that
the space occupied by the lookup table is exponential in the number of fluents. This
is not an issue, because the LDLf -to-DFA conversion has a double-exponential time
cost on the length of the constraints, which is often a much stronger requirement on
the number of usable fluents.

layers module

In Keras, TensorFlow and any modern library, Neural Networks are implemented
as a composition of layers. Although we’re not required to use them, they allow
a better organization of our models. This module defines the basic functionality
related to layers and the specific definitions that will be used in our networks.

BaseLayer is the base class of any layer that will be defined. Its main role is
to set some defaults and enclose the subclasses’ operations in isolated namespaces.
Every layer also appears as an isolated block in the TensorBoard graph visualization.

This module also contains an utility called layerize. This is a function decorator
that can be applied to functions of TensorFlow computations. The result is a new
layer class that executes the same function. This is a very quick way of converting
simple state-less computations to layers. For example, suppose we have a simple
function scale_to(inputs, in_range, out_range) that linearly scales the values
inputs from the in_range to out_range. Applying the decorator,

@layerize("ScaleTo")
def scale_to(inputs, in_range, out_range):

# ...

defines a new class ScaleTo, subclass of BaseLayer. We can now instantiate from
this layer class:

rescaling = ScaleTo(in_range=(0, 255), out_range=(-1, 1))

The layer instance, rescaling, can be used as an atomic operation inside our models.
Now, calling rescaling(x) is equivalent to scale_to(x, (0, 255), (-1, 1)).

The outer module also define:

• Image preprocessing layer: scaling, cropping, resizing.
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• Convolution block: optional padding, 2D convolution, activation function.

6.2.2 agent package

The content of the atarieyes.agent package is used by any atarieyes agent
command. It contains three modules: training, playing and models.

The Deep RL library we’ve selected is called Keras-RL (GitHub keras-rl/keras-
rl) which implements the most common algorithms using the Keras deep learning
library. The specific version used here is a slightly modified version (GitHub
cipollone/keras-rl) that uses TensorFlow 2 instead of Keras3.

models package

This file contains all the necessary definitions to create a keras-rl agent. Since we’ll
instantiate a DQN agent, the most important part is the definition of the agent’s
Q-Network.

The QAgentDef is just an abstract class that represents a definition of a DQN
agent. Subclasses should instantiate two attributes: model, which is the Q-Network
of that agent, and processor, which allows to transform the data exchanged between
the agent and the environment. Subclasses also define a list of metrics that allow to
follow the training process.

Two agents are defined in this module:

class AtariAgent(QAgentDef): # ...

class RestrainedAtariAgent(AtariAgent): # ...

The first of the two, AtariAgent, has the same structure as that of the origi-
nal DQN paper [20]. The model is a TensorFlow Model with the composition of
layers that we’ve illustrated in Section 4.3.1. Essentially, it contains by a stack of
convolutional layers, followed by a final dense layer.

The processor is a function that can transform the observations produced by
the environment, before the agent processes it. This agent uses it to combine a
stack of the 4 most recent images into a single observation (see the discussion on
non-Markovian rewards due to moving bodies). It also apples reward clipping and
terminates episodes when the first life is lost.

The second agent, RestrainedAtariAgent, is used in place of AtariAgent when
a RB is applied (--rb option). The model of the restrained agent is a Q-Network of
two inputs: the image and the RB state. The structure of the net has been provided

3In this version, only DQN algorithm was completely migrated to TensorFlow. The other
algorithms are not supported.

https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/cipollone/keras-rl
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in Section 4.3.2. The processor of the restrained agent, other than performing the
same operations as that of AtariAgent, sends and receives data from the Restraining
Bolt. Every time the environment produces a new image, it sends this observation
to the RB and receives a new pair of state and reward in response. These inputs are
then combined with those of the environment, before passing them to the agent.

The last definitions of this module are the three exploration policies of Sec-
tion 3.1.3: RepeatEpsPolicy, EpisodeRandomEpsPolicy and ExplorationPolicy.

training and playing packages

The Trainer class, inside the training module, is executed for any agent train
command. On initialization, it collects all the command line parameters and the
appropriate agent definition that serve to instantiate a Keras-RL agent. The agent’s
class is the DQNAgent, which is the keras-rl implementation of the (Double) DQN
algorithm. Then, the method Trainer.train enters the main training loop.

Keras uses a very interesting concept: callbacks. A callback can be used to
insert additional computations in specific points of the training loop. We define
two callbacks: CheckpointsSaver, that exports the parameters values at regular
intervals (see --save option), and TensorboardLogger which saves all the metrics
to the log directories in a format that can be visualized by TensorBoard (see --log
option).

The playing module follows a similar idea. It contains a Player class with a
play function. This method enters the agent’s test method, which is the loop of
repeated play against the environment. The callbacks defined in this module are
Streamer to send the images through an AtariFramesSender, and Recorder to
save a video from these frames.

The parts of the whole software regarding features are the most efficient. We’ve
observed that the Atari game simulator and the DQN implementation of Keras-RL
are the bottlenecks of the whole training loop. We could investigate the use of other
RL libraries in the future.

6.2.3 features package

This package is the largest portion of the software, because it implements all the
models and algorithms described in Chapter 5. The files in this directory are used
for any atarieyes features command: training is used when training features,
rb executes a Restraining Bolt from predictions of trained features, and selector
is the regions selection tool (this last module doesn’t need to be discussed further).
The other files in this package serve to define the model or participate at the training
process.
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1 while True:
2 # Receive an observation
3 frame, _ = self.frames_receiver.receive(wait=True)
4

5 # Make a prediction for all fluents
6 predicted = self.fluents.predict(inputs)
7

8 # Update RB
9 state, reward = self.rb.step(predicted)

10

11 # Send RB state and reward to the agent
12 self.rb_sender.send(self.states_map[state], reward)

Listing 6.2. Infinite loop of Runner.run in the rb module.

rb module

When we execute an “atarieyes rb” command, we start an instance that executes
a RB from trained features that continuously interacts with the agent’s instance.
The class responsible for this interaction is called Runner. Its only method, run,
enters the infinite loop shown in Listing 6.2. The procedure is simple. At each
cycle: receive an observation from the environment (RL agent’s instance); predict
the fluents values from the image; use these values to move the Restraining Bolt;
send back the RB state and reward. As we can see, this executes both the features
extractor for prediction and the Restraining Bolt. Of course, in order to predict the
fluents values we need to have a valuation function already trained.

The second class in this module is RestrainingBolt (this is the type of the rb
object in Listing 6.2). The only important detail is that it can either create a new
automaton or load one previously used. We’ll see why this is important.

When the --new option is added to an atarieyes features rb command,
this class creates a new DFA, by combining the JSON file fields constraints
and restraining_bolt into a single formula. Then, it uses the flloat library to
transform it into the corresponding DFA. This automaton is saved in the current
logs directory as a file called rb.pickle. In future runs, if both formulae didn’t
change, it’s important to let this class load the saved automaton.

The fist reason is efficiency, because LDLf to DFA is a very costly operation.
Even more important is that, if the RL agent has trained with one automaton, it
should use exactly the same automaton when testing, or for continued trainings. The
reason is that the agent has learnt to associate a state ID to a configuration of the
environment. Any other permutation of the automaton IDs would be misinterpreted
by the agent’s policy.
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It’s important to precise that the current implementation doesn’t perform reward
shaping [8]. This technique produces additional rewards, even before the temporal
goal is completely reached, in order to guide the RL agent (it is possible to do so,
without modifying the optimal policy). Since this hasn’t been implemented yet, we
used restraining_bolt to reward the prefixes of the desired trajectory. We won’t
consider this detail in the following discussion, as it creates more complex temporal
specifications and it would be avoided with reward shaping.

training module

Just like for the agent, a training command, in this case atarieyes features train,
executes a Trainer.train() method. Its role is to instantiate a features extractor
model according to the parameters supplied (net structure, layer to train, etc),
optionally initialize the parameters from a checkpoint, and start executing the
training loop. At each iteration, it receives a new observation from the agent
instance, samples a new random batch and performs one optimization step with the
Adam optimizer.

Also, in this training loop, at regular intervals, a CheckpointsSaver saves
the current model parameters, and a TensorboardLogger exports the metrics for
visualization. We care this original part more than the agent training loop. So, the
metrics are particularly detailed in this case. Also, they only talk about quantities
that are relevant for the layer currently trained. When we train the Boolean functions,
we can visualize consistency, sensitivity and fitness; instead, when we train a RBM,
we visualize the free energy and reconstruction error, for instance.

All the remaining files in this package concur for the training process or the
model definition. We’ll follow a bottom up description with the few remaining.

temporal module

Training the features requires to evaluate “how much” each candidate set of Boolean
functions satisfies the temporal constraint. For this purpose, this module computes
the “consistency” and “sensitivity” metrics from the received traces of predicted
values.

The only class is called TemporalConstraints. On initialization, it converts the
constraint formula to its equivalent DFA, or loads one previously computed. It’s
interface is composed of just two other methods: observe and compute. The former
must be called at each time step. As argument it receives a matrix of Boolean values,
where each row is one candidate’s prediction of the fluents values. This serves to
update the relevant quantities for computing the two metrics. The latter, compute,
must called at the end of each episode. It has no arguments, but returns two arrays,
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def compute_train_step(self, population, fitness):

# Compute
population = self.reproduce((population, fitness))
population = self.crossover(population)
population = self.mutate(population)
fitness = self.compute_fitness(population)

return population, fitness

def apply(self, population, fitness):

self.population.assign(population)
self.fitness.assign(fitness)
self._update_best()

Listing 6.3. The public interface of any GeneticAlgorithm.

the value of consistency and sensitivity metrics for each candidate set of Boolean
functions.

Both functions have been implemented with TensorFlow operations, so to ensure
a parallel computation for each individual. The time required to compute the fitness
function depends very weakly from the number of candidate functions, as most time
is spent for the Atari simulator.

genetic module

This module contains the implementation of the Genetic Algorithm described in
Section 5.5.2, i.e. GA applied to Boolean functions. The file is structured as follows.
The abstract class GeneticAlgorithm implements most of the algorithm. All the
subclasses that inherit from it just complete the algorithm with the few missing
parts which are problem dependent.

The outer interface of any GeneticAlgorithm is composed of two functions.
Since they are relatively simple, we report their code in Listing 6.3. The first,
compute_train_step, receives the current pair of population of candidates and
fitness values, and computes a new pair after one cycle of the algorithm. We can
clearly recognize the 4 basic steps: reproduction, crossover, mutation, and fitness.
apply receives a pair of newly computed population and fitness values and stores
them into self.population and self.fitness. Instead, _update_best saves the
individual with the highest fitness value to the variable self.best. To execute the
algorithm, the caller can simply loop over the two instructions:
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Figure 6.2. The TensorBoard visualization of the computation graph for GA.

population, fitness = ga.compute_train_step(ga.population, ga.fitness)
ga.apply(population, fitness)

The base class already defines reproduce, crossover and mutate, because most
operations can be executed independently of the problem. Instead, subclasses
are required to implement three functions: initial_population, which returns
the initial set of individuals; compute_fitness, because fitness is clearly problem-
dependent; and sample_symbols, that is used when the algorithm needs to sample
new symbols (chromosomes).

For the greatest efficiency, every computation of this module has been imple-
mented with TensorFlow operations. In fact, reproduction, sampling, crossovers
can be implemented as parallel operations, which leads to a scalable algorithm
for a large number of individuals. This is also the reason of the separation into
compute_train_step and apply: separating most computations from assignments
leads to a more efficient execution and a clearer visualization.

Every function in this class, even those defined by the subclasses, are transformed
to TensorFlow layers, thanks to layerize. This keeps the model organized and
simplifies the TensorBoard graph. We can see the general structure in Figure 6.2.
The blocks we see are layers and their content can be inspected as well.
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We can now proceed to apply this algorithm to learning the Boolean functions,
just like we’ve discussed in Section 5.5.2. The class BooleanFunctionsArrayGA is a
subclass of GeneticAlgorithm that defines the missing methods specifically for the
problem of learning the Boolean rules.

This class defines, through initial_population and sample_symbols, a popu-
lation composed of arrays of Boolean rules. Essentially, each individual is composed
by the concatenation of the same Boolean rules we’ve shown in Figure 5.10 on
page 66. We don’t need to look much other details.

What is important is that this class defines a function compute_fitness which
runs a number of episodes; computes the vector of predictions according to each
individual; and uses the TemporalConstraints class to return the final metrics.
Then, the vector of fitness values is computed as:

# Combine metrics
avg_consistency = tf.math.reduce_mean(consistencies, axis=0)
max_sensitivity = tf.math.reduce_max(sensitivities, axis=0)

# Compute fitness and scale
fitness = avg_consistency * max_sensitivity
fmin, fmax = self._fitness_range
fitness = fmin + (fmax - fmin) * fitness

The class also overrides the _update_best function, because the best individual
is not that with the highest fitness, but the one with maximum consistency (hard
constraint) with the highest sensitivity (soft constraint).

Finally, when we call the public method predict the class computes the most
likely value for every fluent using just self.best. The population is only used for
training.

models module

We’ve discussed both the outer training loop in the features.training module, and
most of the necessary parts such as temporal and genetic module. We complete
this description with models, which defines the complete structure of the features
extractor model.

This file contains many classes, because the outer model is just a composition
of the others inside. This should be the cleanest way to handle such a complex
structure. The outer model, the only that we directly train, is called Fluents, which
realizes the end-to-end behaviour of the features extractor both for prediction and
training.
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class Model(ABC2):

# This is the main model
model = AbstractAttribute()

# Custom training?
computed_gradient = AbstractAttribute()
train_step = AbstractAttribute()

@abstractmethod
def predict(self, inputs):

# ...

@abstractmethod
def compute_all(self, inputs):

# ...

Listing 6.4. The interface of every model definition.

Every class in this file is a subclass of Model. This is an abstract interface that
just indicates what we need to define, much like we’ve done with QAgentDef. We
can see its structure in Listing 6.4. On initialization, every subclass must instantiate
the three abstract attributes. The most important is self.model which stores
any container of TensorFlow operations such as tf.Module or tf.keras.Model.
The other attributes can be used if we need to define a custom training loop.
computed_gradient is a Boolean flag that indicates when the gradient can’t be
automatically computed from the loss function. Similarly, train_step should be
assigned to a callable, when we need to redefine the training phase entirely. The
function predict is used to make a prediction with the model (whatever that means
for a specific subclass), while compute_all performs all operations required both
for prediction and for training (see the class docstring for more details).

The smallest model in the whole hierarchy is the BinaryRBM, which represents a
Restricted Boltzmann Machine with binary units. Its model attribute is just a layer
called BernoulliPair, which is composed by the visible and hidden units. RBMs are
not trained from some loss function, but with Persistent CD. So, computed_gradient
is set to true and compute_all returns both a prediction for the binary units, and
the gradient computed with the algorithm. More precisely, at each call, it performs
a single pass of the “repeat” loop of the Algorithm 1 on page 594.

It’s now easy to proceed by composition: the model of DeepBeliefNetwork con-
tains a stack of BinaryRBMs, and the class LocalFeatures combines a preprocessing

4The gradient also includes two optional regularizations: l2 loss and a sparsity-promoting term.
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Input Encodings Predictions

Encoder
(region 1)

Encoder
(region 2)

Boolean fn 1 0 Fluent 1

Boolean fn 2 1 Fluent 2

Boolean fn 3 0 Fluent 3

LocalFeatures

LocalFeatures

BooleanFunctionsArray

Fluents

Figure 6.3. The disposition of the various classes corresponding to the general scheme of
Figure 5.6 on page 54.

layer and a DeepBeliefNetwork. LocalFeatures represents the encoder model.
On the other hand, the GeneticModel encapsulates any GeneticAlgorithm, cast

as other model definitions, so to use them together. self.model is, in this case, the
population of individuals. Since the training procedure of GAs is so different, we
override the training loop by defining a simple train_step that simply calls the
GA’s compute_train_step and apply.

Now that every model has been defined, we can combine them in the final
arrangement. Fluents is the outer container for all other models. Figure 6.3 shows
how the various models are composed inside the Fluents class. This figure directly
corresponds to the scheme shown in Figure 5.6 on page 54. All the initialization
parameters reflect the command line arguments. For instance, the --network
command chooses the number of units and layers of each encoder. Also, --train
selects which of these inner models should be trained, when we call the Fluents’
compute_all function. Depending on which model we’re working on, both the
computation graph and the metrics saved greatly change.
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Chapter 7

Esperiments

In this Chapter, we’ll use the atarieyes software to test the effectiveness of the ideas
presented in this thesis. The purpose of these experiments is both to demonstrate
that a features extractor can be learnt with the method proposed, and to show how
these features can be used in combination with the Restraining Bolt for complex RL
tasks.

We’ll look at two environments: Breakout and Montezuma’s Revenge. For the
first we’ll test the training process of the features extractor, while the second is used
for a more complete demonstration about the possibilities of the complete agent (we
proceed from learnt features to the application of the Restraining Bolt).

7.1 Breakout

The first environment we’ll see is the famous Atari game “Breakout”. A frame of
this game is shown in Figure 7.1. The goal is to hit all the bricks with the ball (the
small orange dot). Every time one brick is eliminated, the environment produces a
positive reward. The agent, through the four actions available, NoOp, Fire, Right
and Left, can move the paddle at the bottom and direct the ball. Every time the
paddle misses the ball, the agent loses a life. However, during training, we terminate
and reset the episode at this event.

Figure 7.1. A frame from the Atari game “Breakout”.
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full: true when shot 0 of 18 bricks down
empty: true when shot 18 of 18 bricks down

Figure 7.2. In this environment we define two fluents and one region.

The exact environment name for this game is BreakoutDeterministic-v4.

7.1.1 Definitions

We now define two propositional symbols, Full and Empty, and we apply the proposed
model and the training procedure to learn their Boolean valuation function. The
intended interpretation of these two proposition is:

Full should be true when the area is full of bricks.

Empty should be true when there are no bricks inside the area.

The area which we’re talking about is shown in Figure 7.2. The orange rectangle
which contains the intended set of bricks is also the fluents region. So, we’ve defined
two symbols in one region of the image.

How could we describe the behaviour of these two propositions with temporal
logic? When an episode starts, we know that Full should be true, because all bricks
are present, initially. This initial condition is really helpful. Then, Full and Empty
represent concepts that are always mutually exclusive. Finally, since the bricks
cannot reappear, we know that the path is forced: the propositions can’t return
to a previous configuration. All these descriptions translate to the following LDLf
temporal constraint:

Full ∧ → initial condition
[ true∗ ](¬Full ∨ ¬Empty)∧ → exclusive propositions
¬〈 true∗;¬Full; true∗ 〉(Full ∧ ¬End)∧ → can’t reappear
¬〈 true∗; Empty; true∗ 〉(¬Empty ∧ ¬End)∧
¬〈 true∗; Full 〉Empty → not immediately

(7.1)

The conjunction ∧¬End means that we’re not referring to the end of the trace. This
is only required in the LDLf semantics for finite traces used here.

The DFA associated to this temporal constraint is shown in Figure 7.3. This is
the automaton that the software will use to search among the candidate functions.
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Figure 7.3. The DFA associated to the formula in Equation (7.1).

As we can see from its structure, the fluents dynamics is relatively simple. We could
have also used the following equivalent formula:

〈 (Full ∧ ¬Empty)+ 〉(End ∨

〈 (¬Full ∧ ¬Empty)+ 〉(End ∨

〈 (¬Full ∧ Empty)+ 〉End))

(7.2)

where the operator ρ+ is an abbreviation of the regular expression (ρ; ρ∗).
Most states in this automaton are final. In fact, nothing guarantees that the

agent will be able to hit the bricks in every episode. The fluents might not evolve at
all when the agent loses a play.

To specify all these definitions to our software we run:

atarieyes features select -e BreakoutDeterministic-v4

and we select the region of Figure 7.2. Then, we complete the generated file with
the fluents names and any of the two temporal constraints above. The resulting file
is shown in Listing 7.1. ”br” is just the abbreviation for that region name. Other
than that, the file exactly represents what we’ve defined so far.
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{
"_frame": [
8, 32, 152, 197

],
"regions": {
"blue_right": {
"abbrev": "br",
"fluents": [
"br_full",
"br_empty"

],
"region": [
32, 87, 152, 93

]
}

},
"constraints": [
"br_full",
"[true*](!br_full | !br_empty)",
"!<true*; !br_full; true*>(br_full & !end)",
"!<true*; br_empty; true*>(!br_empty & !end)",
"!<true*; br_full>br_empty"

]
}

Listing 7.1. The content of definitions/BreakoutDeterministic-v4.json.
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Figure 7.4. Training the RL agent. Plot of the cumulative reward in each episode.

7.1.2 Training

The first step is to train a RL agent on the environment as it is. Some of the options
we’ve used for the agent train command are: a batch size of 32, learning rate of
0.0001, and double Q-Network update every 10000 steps. To follow the training
progress, we run TensorBoard on the agent’s log directory. The results obtained are
shown in Figure 7.4.

This plot is the cumulative reward achieved in each episode. At the end of the
training, the agent achieves a reward above 70, which means that is able to hit 70
bricks without ever losing the ball. This was an expected result, because at this
stage, we just want to replicate the results of previous studies. The neural network
needs time to adapt to the new observations reached (a frame without bricks is really
different for the Q-Network). However, we stop this training at 4100 episodes, as
this is not the main purpose of this experiment. These performances are, in fact,
sufficient to reach states in which Empty becomes true. So, we’re ready to train the
features extractor.

The fluents are trained from a dataset generated online by a running agent. So,
we start the trained agent from the previous step:

atarieyes agent play <args-file> -c <checkpoint> --rand-test 0.1

where <checkpoint> is any saved agent from the previous training. When training
the feature extractor, the agent should avoid repetitive behaviours, and try to
thoroughly explore the environment. This command selects a 0.1-greedy policy,
but we’ve also experimented with many others, such as --rand-eps. We let this
command run and focus on the receiving side.
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The network that we use for the encoder is a DBN of size (N, 50, 20). N is the
number of input pixels in our region, but this is computed by the software and we
don’t need to specify it. This network contains two RBMs and generates an encoding
of 20 binary units. At first sight, this encoding could seem quite large. However, we
must consider that there are 18 bricks in the selected region. If we want to learn
a representation for these bricks, there must be at least 18 units. 20 constitutes a
nearly-optimal size for this encoding (we use 20, because the optimal might not be
reachable during training). Also, we’ve observed that the shallow network (N, 20) is
not able to achieve the same performances as the deep architecture selected here.

First, we train the layer number 0, that is of size (N, 50), with the following
command:

atarieyes features train --network 50 20 --train blue_right 0

Other omitted arguments are: the environment, learning rate of 0.001, batch size of
50 and regularization factors.

The output of this training is shown by the plots on the left in Figure 7.5. The
most important is the free energy, shown in the top left plot, that we’ve defined in
Equation (5.10) at page 58. A low free energy means that the model is recognizing
the training dataset, because a low energy is associated to a high probability for the
input batches. The second metric, the reconstruction error, shows the L1 distance
between the input images and the reconstructed images (reconstructions are the
most probable images under the encoding assigned for the true inputs). Minimizing
the reconstruction error is not the training objective of Persistent CD, but it’s useful
to visualize it anyway, because, unlike the free energy, we know its correct scale and
lower bound.

We can also appreciate the trained model, by looking at the quality of its
reconstructions. The top row of Figure 7.6 shows three input images in our region.
Each of these inputs has a different configuration of bricks. On the bottom row, we
see the expected input images, given the encoding that the model associates to the
inputs above1.

Now that the first layer is trained correctly, we proceed to the second and final
layer of this encoder. With the commands --train and --init we can train the
next layer (the index is 1) from the weights obtained at the previous step. The
results are shown in the right-hand column of Figure 7.5. We have now trained an
encoder that transforms the input image for this region in a vector of 20 binary
units.

1The expected input has a likelihood term, that is generated from the encoding, and a prior
expectation, which derives from the most frequent input patterns. So, the expected input is a
probabilistic prediction and it shouldn’t be properly considered an input reconstruction.



7.1 Breakout 105

0 0.5 1 1.5 2

·104

−600

−400

−200

0

step

fr
ee

en
er

gy

0 0.5 1 1.5 2

·104

0

0.1

0.2

0.3

0.4

0.5

step

re
co

ns
tr

uc
ti

on
er

ro
r

0 0.5 1 1.5 2

·104

−80

−60

−40

−20

step

0 0.5 1 1.5 2

·104

0

0.1

0.2

0.3

0.4

0.5

step

Training layer 0 – (N, 50) Training layer 1 – (50, 20)

Figure 7.5. Training metrics of the encoder model.

Figure 7.6. True inputs (top row) and expected input images (bottom row). Reconstruc-
tions generated with layer 0.
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Since this is the only encoder, we can now pass to discuss the Boolean functions.
To train this final “layer”, we issue a similar command:

atarieyes features train --network 50 20 --train all 2

For the moment, let’s ignore the specific parameters used in this case. We can
directly look at the training outcome in the plots of Figure 7.7. From top to bottom,
they show the values of “consistency”, “sensitivity” and fitness, averaged over all
candidate functions. These metrics are computed with respect to the automaton in
Figure 7.3. Only the fitness value contributes to the reproduction probability of each
individual. The other two metrics are shown just to get a better understanding.

As we can see from the first peak in the consistency plot, the genetic algorithm,
just by eliminating all the candidates that do not predict {Full} for the initial
configuration, is able to be consistent with the constraint. Then, to further improve
the fitness, the algorithm looks for functions that are also able to explore the
automaton states. Of course, this comes at a risk of falling into rejecting states. It
seems that better candidates are found at step 220 and 260, where predictions visit
all the automaton final states, always satisfying the constraint, at the end of the
trace.

The colors and the vertical lines in Figure 7.7 separate different training com-
mands. After each interruption we resume from the previous state with the --cont
option. This detail is relevant because, as training progresses, the most appropriate
hyper-parameters change. From left to right, the algorithm parameters for each run
are the following:

--fitness-episodes 2 5 12 20
--fitness (30, 100) (30, 100) (10, 100) (10, 100)
--mutation-p 0.02 0.02 0.005 0.002
--crossover-p 0.02 0.02 0.005 0.002

The most important is --fitness-episodes, which determines how many episodes
are observed in order to compute the fitness function. As training progresses, we
should increase this number, because the target function should be ideally consistent
with any trace. A good nondeterminism from the agent’s side, helps to generate
diverse test episodes and to keep this number limited. Similarly, the other parameters
follow a similar idea: training should slow down and be more accurate over time.
At the end of this process, a best candidate is selected according to the criterion
described in the previous chapter: the individual with maximum consistency and
highest sensitivity.
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Figure 7.7. Training metrics generated by the GA for the Boolean functions: population
average values for consistency, sensitivity and fitness.
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input images Full Empty

T F

F F

F F

F T

Figure 7.8. Predictions on Breakout with the trained model.

7.1.3 Comments

We’ve now trained a complete features extractor. From an image of the Breakout
environment, it’s able to predict a Boolean value for Full and Empty. To verify the
quality of the result, we can just make predictions with this model. We can see few
predictions in Figure 7.8. For compactness, we show just a portion of the entire
frame, and the input region is highlighted in the rectangle.

In these, and many more cases that we tested, the model is always correct. The
only wrong prediction we could find is the following:

Full Empty

T F

where it mistakenly predicts that the region is still full of bricks. To understand
this small error, we looked at the agent’s plays and we discovered that it has learnt
to always hit that brick at the very first touch with the ball. Let’s see what this
repetitive behaviour had caused.

One great advantage of working with Boolean functions from a compact encoding
space is that we can inspect and understand what the model has learnt to recognize;
i.e. which input patterns the model associates to a true output. To do so, we need
to visualize both the meaning of the Boolean features and the Boolean rules deciding
from such features.

The large image in Figure 7.9 contains 20 “rows”. The i-th row in this image
is the expected input region that the DBN predicts, given an encoding vector of
zeros except for a 1 at the i-th position (we can do this backpropagation because
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Figure 7.9. Visualization of the trained encoder and Boolean functions. Each row represents
an input feature. Details are explained in the main text.

the encoder is a probabilistic model). So, each line contains the input that is most
correlated with each encoding unit; essentially, what each unit represents. It emerges
an interesting result: each unit is correlated to the presence of one, or at most
two bricks. For example, when the left-most brick is present, the third unit of the
encoder is 1, and vice versa.

The most probable inputs shown here are also affected by a prior probability.
In fact, the fourth brick, which is almost always down, is the same that the agent
has learnt to hit first (see the dark column). Since the fourth brick is so rare, the
model didn’t associate any unit to its precence, but it has only assigned a strong
prior probability, instead. So, the wrong prediction we’ve seen above is caused by
a too coarse encoding. Clearly, everything that the encoder considers of the same
class cannot be distinguished by the Boolean functions.

On the right of Figure 7.9, there are two columns of 0s and 1s. These are the
Boolean rules (1-rules) of the best candidate that the model has selected. We can
recognize a reasonable pattern: the rule for Full requires the absence of the features
1 and 10, which detect the empty line, and the presence of many other features,
which are associated to the presence of each brick. The rule for Empty does almost
the opposite.
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We also understand that the concept for Full is not learnt exactly, because the
rule doesn’t require anything about the second brick (feature number 8). This is
not necessarily an error: we want the features extractor to give correct valuations
just for the trajectories visited by the agent, not for any input. In fact, the training
dataset are the observations produced by the agent, and we want the valuations
function to be correct on those. In this example, the light colour of the second
column suggests that the second brick is the last to be hit. At that point, the model
has many other evidences that Full must be false (other bricks required by the rule
are down, already). So, it didn’t need to link the concept of the fluent to the 8th
feature. In general, this is the reason why the agent’s policy should have a strong
stochastic component: to encounter as many possible trajectories during the training
phase.

To conclude, this game is not considered a complex environment for Deep RL,
because it has been solved as one of the first games. Instead, it can be a much
more challenging environment, if we consider the features extraction problem. The
difficulty of learning some propositions doesn’t reside in the cumulative reward, but
on the complexity of the observations and on the desired meaning of the propositions.
This problem quickly becomes hard when we want to learn very complex concepts.

Even though our observations had very little noise (the ball passing was the only
noise, in fact), we selected a region with many meaningful configurations. Due to
the combinatory nature of the bricks, we’ve asked the features extractor to detect
one in 218 configurations, which is not an easy task. As we’ve seen, this goal as been
achieved almost perfectly.

Due to the way temporal constrains and metrics work, it’s better to learn some
correlated fluents at the same time. Even if we would only need Full for some
temporal goal, we wouldn’t be able to learn one of the two symbols in isolation.

7.2 Montezuma’s Revenge

With the previous game, we’ve shown that it’s indeed possible to learn Boolean
propositions of moderate complexity. Here, instead, we demonstrate the complete
training procedure described in Section 5.6: from a completely inexpert agent, we’ll
obtain a capable one, that bases its decisions on the features learnt.

We’ll use a second game from the Atari collection, called Montezuma’s Re-
venge (the precise environment name is MontezumaRevengeDeterministic-v4).
Figure 7.10 shows the initial image of this game. The agent’s goal is to move the
character inside the many rooms of the labyrinth, collect the items required to
advance, and avoid enemies. The action space is composed by 18 actions. They
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Figure 7.10. A frame from the Atari game “Montezuma’s Revenge”.

allow to move the agent to remain still, move left-right, up-down (and combinations
of the two), optionally while performing the fire action.

As we can imagine from the many actions and the more complex map, this game
is much harder for a RL agent with respect to Breakout. In fact, it’s arguably the
most difficult among all games in the Atari 2600 collection. We can see, for example,
that in [19] the DQN agent achieves no rewards at all. This difficulty arise from
two factors: partial observations (because of the many rooms), and sparse rewards.
Luckily, both issues can be addressed with the Restraining Bolt, because it can be
used to provide additional rewards when specific trajectories or simple conditions
are reached.

7.2.1 Definitions

The problem of sparse rewards is the first difficulty the agent faces. In fact, reaching
the first rewarded state, which is taking the key of Figure 7.10, requires a long
sequence of correct actions that is almost impossible to achieve at random.

The fluents that we’ll define serve for this purpose: correctly navigating this first
room. Four of them, AtStart, AtStairs1, AtStairs1bot, AtStairs2, should be valuated
to true if the character is at each of these positions. We can see the regions to which
they refer, in Figure 7.11. The last one, KeyTook, should be true when the key has
been taken by the agent.

We can clearly use these symbols to guide the agent through the room, rewarding
it at each spot reached. When it grabs the key, the environment sends a reward, so
that of the RB is redundant. However, in order to progress, the agent has to get the
key and come back to the start position. So, KeyTook is required in order to write
the correct temporal specification.

As we’ve seen in Section 5.6 “Training and incremental learning”, we can’t
directly learn the fluents that the agent is not able to influence. In this case, we can’t
learn what it means KeyTook until the agent is able to grab it. So, only AtStart and
AtStairs1 will be learnt, initially. Then, every time the agent becomes able to reach
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AtStart

AtStairs1

AtStairs1botAtStairs2

KeyTook

Figure 7.11. Definition of five fluents and their associated regions. The correct valuation
for this frame would be: {AtStairs1}.

a new position, we can expand our definitions to include a new symbol to learn.
We’ll now show the complete JSON file of definitions, but, for brevity, we’ll omit

the symbol AtStairs1bot. The file is shown in Listing 7.2. The restraining_bolt
section is empty here, but it will be filled later on. Other than the initial condition,
this constraint states that the “At” propositions are mutually exclusive, because the
agent can be only in one place at the time. Also, at least one instant is needed to
pass from one place to the other.

7.2.2 Training

Following the same procedure as in the previous game, we should train the RL agent
alone on the environment rewards. However, as previously studies had found, the
agent can’t reach any reward at all, here. This is fine. The first agent is used just to
train the features extractor. The random policy will be enough to learn the first two
symbols: AtStart and AtStairs1. So, we run:

atarieyes agent play <args-file> -c <checkpoint> --rand-test 1

which plays completely with random actions.
The encoder network we chose is a DBN with size (N, 10, 1). This means that

each input region is encoded into a single Boolean value. Let’s discuss this choice: a
scalar encoding means that the fluent value will be exactly the extracted Boolean
feature. Therefore, the Boolean functions play no role at all in the selection of the
desired concept (they can only negate the received value). This is intentional. As
we’ve previously noted, the encoding size should be the smallest number of units that
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{
"_frame": [ 0, 47, 160, 180 ],
"regions": {
"start": {

"abbrev": "start",
"region": [ 74, 79, 87, 87 ],
"fluents": ["start_at"]

},
"stairs1": {

"abbrev": "stairs1",
"region": [ 131, 129, 141, 145 ],
"fluents": ["stairs1_at"]

},
"stairs2": {

"abbrev": "stairs2",
"region": [ 19, 167, 29, 181 ],
"fluents": ["stairs2_at"]

},
"key0": {

"abbrev": "key0",
"region": [ 11, 98, 22, 116 ],
"fluents": ["key0_took"]

}
},
"constraints": [
"start_at & !key0_took",
"[true*](start_at -> !(stairs1_at | stairs2_at))",
"[true*](stairs1_at -> !(start_at | stairs2_at))",
"[true*](stairs2_at -> !(start_at | stairs1_at))",
"[true*; start_at]!(stairs1_at | stairs2_at)",
"[true*; stairs1_at]!(start_at | stairs2_at)",
"[true*; stairs2_at]!(start_at | stairs1_at)"

],
"restraining_bolt": []

}

Listing 7.2. The content of definitions/BreakoutDeterministic-v4.json (symbol
stairs1bot_at omitted for brevity).
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are sufficient to determine the truth of the propositions. If, with a single unit, the
encoder is able to isolate the required feature by itself, there’s no point in transfering
this task to the Boolean functions, where the separation might be more complex.

The training command for the first layer of the encoder at the “start” region is:

atarieyes features train --network 10 1 --train start 0

We repeat this process for layer 1 and the encoder at region “stairs1”. All these
runs are much faster than in the Breakout case, because the input images show
little diversity. On the other end, the event we’re trying to catch is very rare (the
agent needs to pass on each region by chance), so we use a slightly larger batch size,
with 100 images. Figure 7.12 shows the reconstruction error for each of these four
trainings. We omit plots for the last layer, the Boolean functions.

The features extractor obtained correctly valuates both symbols, AtStart and
AtStairs1, in all images that we tested. Let’s see what the model has learnt. In
Figure 7.13, we visualize the expected input images given the output encodings, in a
similar way to Figure 7.9. In this case, the encoding is composed of just one Boolean
unit. So, we show the input associated to both values.

The left images are the expected inputs when the encodings are 0, while the
right are associated to 1. Since the character is rarely inside the regions, there is a
strong bias that tend to uniform all these images. So, we’ve slightly emphasized the
differences between the two columns to improve this visualization. As we can now
understand, the encoders have learnt to recognize when the agent is not inside each
region. The slight gray tones in the left column mean that there is some possibility
for the agent to be there, when the encoding is 0; while it is certainly not there for
the output 1. In fact, if we then look at the Boolean rules, we would see that this
encoding is negated to produce the fluent valuations.

The now complete features extractor can be used to guide the agent with
additional rewards. We write the following simple temporal goal:

〈 (¬AtStairs1)∗ 〉(AtStairs1 ∧ Last) (7.3)

which sends a single reward when the agent reaches the stairs on the right (see the
regions in Figure 7.11). We write this formula on the field restraining_bolt in the
file of definitions. If we remember that the agent wasn’t able to reach any reward at
all, this initial goal is a way to start.

We now train the RL agent on this goal by executing both agent train and
features rb. Once we see that the agent has learnt to reach this first goal, we can
repeat the previous process for a new symbol. In this case, we would let the trained
agent play, and train the features extractor for the symbol AtStairs1bot, which is
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Figure 7.12. Training metric for each encoder and layer. The x-axis is the training step,
the y-axis is the reconstruction error.
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encoding 0 encoding 1

“start”
region

“stairs1”
region

Figure 7.13. Expected input images for each region and encoding output. The differences
between columns have been emphasized.

the next encountered the path. With this iterative procedure we’ve been also able
to learn AtStairs2.

To this point, we’ve mainly addressed the problem of sparse rewards, because the
Restraining Bolt has been used to send rewards upon the detection of some events.
However, we can also use it to solve non-Markovian tasks. Suppose we want the
agent to repeatedly jump from “start” to “stairs1” and vice versa. This apparently
simple problem cannot be solved just providing the appropriate rewards, because,
from one input frame, the policy hasn’t enough information about where to direct
the player. Instead, the RB is able to provide a consistent information about the
next position to reach.

In the restraining_bolt field, we now write a LDLf formula, that, combined
with the temporal constraints, corresponds to the automaton in Figure 7.14. What
this specification says is that the agent can accumulate rewards, represented by the
final states, by following the cycle of states: 3→ 1→ 4→ 5→ 3. So, it is induced
to pass from “start” to “stairs1” and vice-versa. This is only possible, because the
agent also receives from the RB in which of these states it is.

Seen as an image-to-action function, the agent’s policy corresponding to states
4, 7 and 5 will tend toward the position “start”, while for 1, 6 and 4, it will point
in the opposite direction. We run the usual agent–features pair of instances to
train the agent on this new goal. In Figure 7.15, we show the the cumulative reward
during this training. The increase we see means that the agent is learning to get
from one position to the other, multiple times, in the same episode. The maximum
of 14 means that it touches both positions 7 times. In Figure 7.16, we show the



7.2 Montezuma’s Revenge 117

Figure 7.14. Automaton associated to the last temporal goal (back and forth from “start”
to “stairs1”).
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Figure 7.15. Training the RL agent on the “start”–“stairs1” goal. Plot of the cumulative
reward in each episode.
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Figure 7.16. Path followed for the “start”–“stairs1” goal.

approximate path that it usually follows.

7.2.3 Comments

In this second environment, we’ve shown how to interleave two processes: training
the RL agent and training the features extractor. We gradually improved the agent’s
performance until it had been possible to reach a satisfactory set of symbols. Then,
we used this set of fluents to declare a non-Markovian task, and we’ve shown a
successful training and play with the Restraining Bolt.

In this small section, we’ll make few observations about these experiments on
the Montezuma’s Revenge game. First, we highlight some interesting details:

Rare events Although the symbols represented very simple conditions, we re-
quested encoder to recognize very rare events. This has been possible thanks
to Persistent CD, because it focuses on encoding the input distribution, not
finding the accurate input reconstruction.

Long training Restrained RL agents require longer trainings with respect to the
agent without the Restraining Bolt. Often, this effect isn’t caused by the
additional parameters that are required. Instead, this is needed by the more
complex policy that we want to learn. Q-values have now a more complex
landscape that requires to sample pairs of (input images–output values) for
each automaton state, because the best action can be radically different for
each of those. Unfortunately, sampling cannot be performed uniformly, since
the agent has to reach those state. So, rare configurations will slow down the
training.
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Regarding the necessary improvements to this example:

Too many actions With the same training time, as the number of action increases,
the quality of the policy decreases, because sampling becomes less efficient. 18
distinct and independent actions may be too much. Instead, we could try to
exploit the fact that some of them are just a composition of a smaller group of
actions, such as: Left + Up + Fire.

Explore the map! We have all the symbols we need to write a temporal specifi-
cation that asks the agent to reach the key, then leave this first room of the
game. This would be a more interesting challenge to try. Instead, in order to
navigate the other rooms of the maze, we would need to slightly modify the
implementation to remove fixed regions. This idea is introduced in Section 8.3
of “Future works”.
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Chapter 8

Conclusions

8.1 Overview

With this thesis, we addressed the problem of applying a method, called the “Re-
straining Bolt” [6], to Deep Reinforcement learning. This necessity is caused by the
known limitations of RL, that Deep RL directly inherits: the Markovian assumptions
on rewards an observations. Full observability, in particular, is always falsified in
the real world, and even in some video games of moderate complexity. Instead, this
logic construction, inspired by [1], allowed us to solve RL environments with sparse
rewards, and a large class of tasks with partial observations and non-Markovian
goals. This means that we’re starting to address the group of problems where RL
and Deep RL always struggled.

However, any form of logic reasoning works by manipulating an abstraction. In
the case of the temporal logics used by Restraining Bolt, we’re talking about a set of
atomic propositions, that represent the state of some meaningful conditions in the
outside world. Creating this connection, between environment observations and true
atomic propositions, is clearly not an easy task. The more complex the observations
become, the harder is to ground the truth of such symbols to the environment states.
This is the major limitation that impede the application of some high-level reasoning
to Deep RL.

By slightly extending the concepts of “observation” and “proposition”, any
decision problem can be stated as the issue addressed here: the problem of deciding
the truth of a propositional atom. So, after the general frame in which this problem
has been introduced, we must remember that we’ve only considered a limited class
of observations and propositions.

Our observations are images of the video games of the collection Atari 2600.
Propositions are conditions on visual features on the image, such as the presence of
an object at some location, or a certain pattern of a visible feature. Limitations and
assumptions regarding propositions have been listed thorough Chapter 5.
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8.2 Main contributions

In this section, we summarize the main contributions of this thesis. Most of them
have been motivated by the need of a successful application of the Restraining
Bolt to Deep Reinforcement Learning. The Restraining Bolt has been previously
demonstrated only in combination with RL. Moving to more complex observations
required to devise many original solutions that we list here:

Model for a deep restrained agent
Deep RL agents trained with value-based algorithms rely on Q-Networks.
When the agent plays in combination with a Restraining Bolt, it receives the
image from the environment and the RB state. How should be combine such
different inputs in the agent’s network? The model proposed in Section 4.3.2
uses the RB state to select the appropriate parameters to use among a set.
Although only a portion of the network has been separated, this allow to
produce radically different policies for distinct RB states.

Learning fluents with temporal constraints
Chapter 5 proposed original ideas to solve the problem of learning valuations
for some propositions. We used formulae of temporal logics to express the
expected temporal behaviour of the desired valuations. The known limitations
of this approach have been discussed in Section 5.7, but we also provided
experiments to shown that these ideas can be effective in the class of problems
under consideration.

Models for the features extractor
With “features extractor” we called the complete function that from an image
of the game returns the fluents Boolean values. This thesis also proposed a
model for this function, which combines a part of unsupervised learning, a
DBN network, and an array of Boolean functions. This last part is inspired by
the area of concept learning. This double arrangement addresses the known
limitations of temporal constraints. Furthermore, as the visualizations in the
Experiments chapter have shown, the output encoding of the DBN can be
understood by the human observer. The final part of the model might also be
easily be defined by hand, if we desire.

The atarieyes package
We provide an implementation for all the ideas presented in this thesis. The
software atarieyes is a Python package, documented in a clear way. Most
operations can be performed just from the command line interface it provides,
with many tunable training parameters. Its internal structures can be also
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adopted in future applications, thanks to the modular design of the package.
The most interesting feature is that the functionalities related to the fluents
are completely separated from the RL agent. We could even train a feature
extractor or apply the Restraining Bolt with agents realized with other Deep
RL libraries.

We conclude with two minor contributions that are worth mentioning. First, we
worked to the recent improvements to the flloat Python library, together with the
original author [8]. This is package is currently used by researchers for LDLf -to-DFA
translations, and it’s the one we adopted in this thesis. Together, we worked for a
more stable version of the software and an improved language parser for LDLf .

Lastly, we’d like to emphasize that Chapter 4 presented RL problems with partial
observations and temporally extended goals, with a unified approach. We’ve shown
some similarities between the two, and started to illustrate why it is possible to
adopt the Restraining Bolt, which is devised for the latter group, also for some
problems of the former class. We’ve discussed that if it can be successfully applied,
the RB is a clever way to define the extended state space which include the relevant
history-related informations.

8.3 Future works

Features extraction is clearly a central topic of this work. We believe that temporal
logics can be also used to describe the desired meaning of our symbols. Still, we
don’t think to have satisfactorily demonstrated this possibility. In the future, we’d
like to remove some of the most limiting assumptions taken in this thesis, so to
allow more interesting possibilities. Aware of the current limitations of this work,
we conclude the thesis by suggesting some interesting directions for future research:

Removing regions One simplification we took is valuating fluents on fixed portions
of the input image. Clearly, this strongly restricts the class of observations
that can be handled, since it requires mostly static elements in the scene. We
should definitely avoid this. One possibility is to define regions not on fixed
locations, but on specific visual features of the image. The idea is first to find
the relevant feature, then evaluate the symbol on a portion of the input at
that moving position.

Removing metrics The “consistency” and “sensitivity” metrics have been used
to rank candidate function and pick a solution. However, both of them induce
a rather arbitrary ordering over candidates, which might not suitable for all
problems. They are a form of heuristics, biasing our search. Instead, we
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should only check for satisfaction between the traces and the constraint. The
reason for their adoption is that, as we’ve discussed in Section 5.7, temporal
constraints are very weak indications when used alone. We should search
alternative and more correct ways to ground the model predictions to the
desired valuations.

Strong grounding We believe that this last issue is the most important to discuss.
Temporal constraints are just weak indications of the desired input-output
associations. Just by talking in some abstract language, we can’t hope to
reliably bind the abstraction we’re using to the external world states. These
states must appear inside the specification, somehow. We propose to investigate
two possibilities:

• The first is to include in the temporal specification some grounded fluents.
Grounded fluents are propositional symbols which are exactly valuated.
They might come from events that the agent already knows, such as
the action just performed, or from conditions reliably valuated by some
ad-hoc Neural Network.

• The second is to include a very small dataset of few input-output labelled
samples. These very few examples can specify desired valuations which
would be hard to describe otherwise.

We strongly believe that merging temporal constraints with more classic sources
of informations like the two mentioned above would create very more specific
and effective descriptions of the desired concepts.

Experiments The last, and more obvious, necessity is to test these improvements
to see what can be achieved. We believe that these changes would open many
possibilities. Also the original idea hasn’t been satisfactorily demonstrated
just from the experiments shown in this thesis.

The problem we tried to addressed in this work is a central topic. This isn’t
something related just to the Restraining Bolt method, but with any form of logic
reasoning on Deep RL agents. Even in presence of a Markovian task, which might
be solved with a pure Deep RL agent, there might be the necessity to look into the
agent policy. Policies on images are really hard to visualize and understand, because
they don’t process structured representations, which are much clearer for humans.
Being able to create reliable abstractions is an important goal that would also help
to us to better understand the agent’s purposes and strategies.
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